143 research outputs found

    MicroRNA expression is associated with auditory dysfunction in workers exposed to ototoxic solvents and noise

    Get PDF
    This study is part of a project on early hearing dysfunction induced by combined exposure to volatile organic compounds (VOCs) and noise in occupational settings. In a previous study, 56 microRNAs were found differentially expressed in exposed workers compared to controls. Here, we analyze the statistical association of microRNA expression with audiometric hearing level (HL) and distortion product otoacoustic emission (DPOAE) level in that subset of differentially expressed microRNAs. The highest negative correlations were found; for HL, with miR-195-5p and miR-122-5p, and, for DPOAEs, with miR-92b-5p and miR-206. The homozygous (mut) and heterozygous (het) variants of the gene hOGG1 were found disadvantaged with respect to the wild-type (wt), as regards the risk of hearing impairment due to exposure to VOCs. An unsupervised artificial neural network (auto contractive map) was also used to detect and show, using graph analysis, the hidden connections between the explored variables. These findings may contribute to the formulation of mechanistic hypotheses about hearing damage due to co-exposure to noise and ototoxic solvents

    Urinary oxidative stress biomarkers in workers of a titanium dioxide based pigment production plant

    Get PDF
    Titanium dioxide is produced or imported into the EU for over one million tons/year. The International Agency for Research on Cancer (IARC) classification is 2B, a possible inhalation carcinogen for humans. This study evaluates urinary biomarkers of oxidative stress in workers of a plant producing TiO2 pigment powder, having 0.25 ”m average particle size and an ultrafine fraction, compared to unexposed subjects. Urine samples were collected from forty workers before and after the shift, from six employees of the same company and eighteen volunteers from the same geographical area. Titanium and other metals concentrations were measured by ICP-MS, while DNA, RNA, and protein oxidation products by HPLC/MS-MS. A statistically significant increase was found for the urinary concentration of Al, Cd, Cr, Cu, Fe, Mn, Pb, Ti, and Zr, and for all biomarkers of oxidative stress in post-shift workers' urine samples. Urinary concentrations after the working shift were higher than for employees and volunteers pooled together for Cd, Mn, and Zr, and for the oxidative stress biomarkers 8-oxoGuo, 8-oxodGuo, and 3NO2Tyr. Biomonitoring studies on dose and effect biomarkers for TiO2 occupational exposure provide information useful for protecting workers' health even in conditions that comply with health and safety standards, highlighting reversible effects of chronic exposure at very low doses

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the Safe and Efficient Chemistry by Design (SafeChem) project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union's Horizon Europe Research and Innovation program

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    Funding Information: Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the “Safe and Efficient Chemistry by Design (SafeChem)” project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union’s Horizon Europe Research and Innovation program. Publisher Copyright: Copyright © 2023 Zare Jeddi, Galea, Viegas, Fantke, Louro, Theunis, Govarts, Denys, Fillol, Rambaud, Kolossa-Gehring, Santonen, van der Voet, Ghosh, Costa, Teixeira, Verhagen, Duca, Van Nieuwenhuyse, Jones, Sams, Sepai, Tranfo, Bakker, Palmen, van Klaveren, Scheepers, Paini, Canova, von Goetz, Katsonouri, Karakitsios, Sarigiannis, Bessems, Machera, Harrad and Hopf.The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the ‘Europe Regional Chapter of the International Society of Exposure Science’ (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.publishersversionpublishe

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.PARC project (grant no. 101057014) funded under the European Union’s Horizon Europe Research and Innovation program.info:eu-repo/semantics/publishedVersio

    First Results of the “Carbonaceous Aerosol in Rome and Environs (CARE)” Experiment: Beyond Current Standards for PM10

    Get PDF
    In February 2017 the “Carbonaceous Aerosol in Rome and Environs (CARE)” experiment was carried out in downtown Rome to address the following specific questions: what is the color, size, composition, and toxicity of the carbonaceous aerosol in the Mediterranean urban background area of Rome? The motivation of this experiment is the lack of understanding of what aerosol types are responsible for the severe risks to human health posed by particulate matter (PM) pollution, and how carbonaceous aerosols influence radiative balance. Physicochemical properties of the carbonaceous aerosol were characterised, and relevant toxicological variables assessed. The aerosol characterisation includes: (i) measurements with high time resolution (min to 1–2 h) at a fixed location of black carbon (eBC), elemental carbon (EC), organic carbon (OC), particle number size distribution (0.008–10 ÎŒ m), major non refractory PM1 components, elemental composition, wavelength-dependent optical properties, and atmospheric turbulence; (ii) 24-h measurements of PM10 and PM2.5 mass concentration, water soluble OC and brown carbon (BrC), and levoglucosan; (iii) mobile measurements of eBC and size distribution around the study area, with computational fluid dynamics modeling; (iv) characterisation of road dust emissions and their EC and OC content. The toxicological assessment includes: (i) preliminary evaluation of the potential impact of ultrafine particles on lung epithelia cells (cultured at the air liquid interface and directly exposed to particles); (ii) assessment of the oxidative stress induced by carbonaceous aerosols; (iii) assessment of particle size dependent number doses deposited in different regions of the human body; (iv) PAHs biomonitoring (from the participants into the mobile measurements). The first experimental results of the CARE experiment are presented in this paper. The objective here is to provide baseline levels of carbonaceous aerosols for Rome, and to address future research directions. First, we found that BC and EC mass concentration in Rome are larger than those measured in similar urban areas across Europe (the urban background mass concentration of eBC in Rome in winter being on average 2.6 ± 2.5 ÎŒ g · m − 3 , mean eBC at the peak level hour being 5.2 (95% CI = 5.0–5.5) ÎŒ g · m − 3 ). Then, we discussed significant variations of carbonaceous aerosol properties occurring with time scales of minutes, and questioned on the data averaging period used in current air quality standard for PM 10 (24-h). Third, we showed that the oxidative potential induced by aerosol depends on particle size and composition, the effects of toxicity being higher with lower mass concentrations and smaller particle size. Albeit this is a preliminary analysis, findings reinforce the need for an urgent update of existing air quality standards for PM 10 and PM 2.5 with regard to particle composition and size distribution, and data averaging period. Our results reinforce existing concerns about the toxicity of carbonaceous aerosols, support the existing evidence indicating that particle size distribution and composition may play a role in the generation of this toxicity, and remark the need to consider a shorter averaging period (<1 h) in these new standards

    Monitoraggio biologico ed esposizione occupazionale: come i risultati di ricerche bibliografiche su riviste indicizzate con l’uso di keywords sono cambiati nell’arco di cinque anni. 76° Congresso Nazionale SIMLII (Società Italiana di Medicina del Lavoro ed Igiene Industriale). Messina, Giardini Naxos. 9-11 ottobre 2013

    Get PDF
    The objective of the study is to analyze how the topics of the publications regarding the biomonitoring of workers have changed from 2007 to 2011, in order to understand how research subjects and priorities are evolving in the last years. Two bibliographic databases have been used, Scopus and PubMed. This last provided 1338 documents published from 2007 to 2011, that were analyzed using MEVA (MedLine Evaluator): a new search for the MESH terms found in the 5 most frequent journals in 2007 and in 2012 was made and compared. The differences between Scopus and Pubmed results were also analyzed. Results are presented as Clouds. The 5 journals were Ann Occup Hyg , J Occup Environ Hyg , Int Arch Occup Environ Health, Occup Environ Med, J Environ Monit. In 2007 among the most frequent MESH terms traditional concerns like Air Pollutants, Dust, Metallurgy, Chemical Industry and Coal Mining were found. In 2011 new MESH terms occur with high frequency, like noise, endotoxin, nanoparticles, power plants and skin chemistry. Bibliographic databases and new bibliometric tools can help the research community to understand how the changes in the society are reflected by the changing topics explored in the scientific papers highlighting which are the new risks, new substances, old and emerging concerns for the workers’ safety and public health

    Environmental and biological monitoring of workers exposed to antineoplastic drugs. Dose and effect biomarkers

    No full text
    Antineoplastic drugs are among the most widespread drugs. Consequently, workers involved in their handling and management could be exposed to hazardous chemicals. However, even if procedures are established, it is of the utmost importance that attention on this issue never faint. For these reasons, our Institution is always very attentive and has conducted a specific study in collaboration with “Sapienza”, Rome University. An environmental monitoring campaign, combined with biological monitoring, was carried out in an oncology ward of a hospital in central Italy. Cyclophosphamide, ifosfamide, cytarabine, dacarbazine, doxo and epirubicine, gemcitabine, methotrexate and 5‑fluorouracile were selected for this study due to their diffusion. A wipe‑sampling procedure followed by a LC‑MS/MS analysis was used to evaluate the contamination of benches, hood and general surfaces inside the “Unit for cytotoxic drug preparations” (Unità Farmaci Antiblastici‑UFA). A Solid Phase Extraction procedure coupled with the same LC‑MS/MS method was applied to analyze urine samples of the workers involved in cytotoxic drugs handling. Moreover, biomarkers of oxidative stress were analyzed on the same biological samples in order to evaluate if a correlation exists between drugs exposure and damages to proteins, RNA and DNA. Results showed the presence of one or more of the selected analytes on the surfaces before the cleaning procedure but, worryingly, also after it. Biological monitoring followed a similar trend showing the presence of cyclophosphamide, dacarbazine, methotrexate, cytarabine and 5‑fluorouracile in different samples. Urinary concentration of 8‑oxo‑7,8‑dihydro‑2’‑deoxyguanosine was found higher than that of a group of healthy volunteers not exposed to antineoplastic drugs, showing a possible effect of cytarabine on biomarkers of DNA oxidative stress. Outcomes raised from the analyzed samples and the biomarkers evaluation highlighted the presence of many critical issues. Contamination depends on many factors, such as working modalities and cleaning procedures, however specific training courses as well as continuous monitoring plans for risk assessment are still extremely important to protect the workers’ health
    • 

    corecore