23,704 research outputs found

    Micrometric particles twodimensional self-assembly during drying of liquid film

    Full text link
    We computed the self-organisation process of a monodisperse collection of spherical micrometric particles trapped in a two-dimensional (2D) thin liquid film isothermally dried on a chemically inert substrate. The substrate is either flat or indented to create linear stripes on its surface. The numerical results are illustrated and discussed in the light of experimental ones obtained from the drying of diamond particles water based suspension (d50=10μmd_{50} = 10 \mu m) on a glass substrate. The drying of the suspension on a flat substrate leads to the formation of linear patterns and small clusters of micrometric particles distributed over the whole surface of the substrate, whereas the drying of the suspension on a indented substrate leads to the aggregation of the particles along one side of the stripe which has a higher roughness than the other side of the stripe. This is an easy experimental way to obtain colloidal selforganized patterns.Comment: 16 pages 7 figure

    Kinetics of in situ epoxidation of hemp oil under heterogeneous reaction conditions: an overview with preliminary results

    Get PDF
    Epoxidised hemp oil (EHO) was synthesised in the laboratory by reacting hemp oil (HO) with peroxyacetic acid (PA) in a batch reactor. The peroxyacetic acid was formed in situ from acetic acid (AA) and hydrogen peroxide (H2O2) in the presence on an acidic ion exchange resin (Amberlite IR-120) as catalyst. The overall reaction can be thought of as having two components. The first being epoxidation, a homogenous reaction which occurs at the interface of the aqueous phase and the HO phase while the second is the formation of PA, a heterogeneous reaction at the interface of the aqueous phase and the solid catalyst phase. The overall reaction kinetics were modelled by applying the Langmuir-Hinshelwood-Hougen-Watson (LHHW) model to heterogeneous reactions. Of the steps in the reaction it is postulated that the formation of PA is rate limiting, while the epoxidation occurs comparatively fast negating the requirement for an additional homogenous model. The diffusion steps in the reaction are also ignored in the kinetic model as it is believed that their effects are negligible due to intensive mixing in the batch reactor. Experiments were used to determine the optimal molar ratios of reactants and it was found that at these conditions 88% conversion of double bonds to epoxy groups occurred. The kinetic model was found to be in good agreement with the experimental results

    Results of bottom trawl surveys carried out in Vietnamese waters (20-200 m) in 1996-1997

    Get PDF
    Bottom trawl surveys were conducted in the southwest monsoon season in 1996 (survey 1) and in the northeast monsoon season in 1996-97 (survey 2) throughout Vietnamese waters. The surveys mainly covered the depth zone 50-200 m but in the northeast monsoon season the depth zone 20-50 m was included in the northern and southern areas. Overall, 273 trawl hauls were conducted. The total biomass for Vietnamese waters in the depth zone 20-200 m was estimated at 700 000 t . Biomass estimates are given for the most abundant species. A relatively higher mean catch-per-unit effort (CPUE) was obtained from survey 2 than from survey 1 and in partcular at depth ranges 50-100 and 100-200 m in south Vietnam. Overall, the dominant families were Monacanthidae (34%), Carangidae (15%), Trichiuridae (9%) and Synodontidae (6%)

    Aubry-Mather measures in the non convex setting

    Get PDF
    The adjoint method, introduced in [L. C. Evans, Arch. Ration. Mech. Anal., 197 (2010), pp. 1053–1088] and [H. V. Tran, Calc. Var. Partial Differential Equations, 41 (2011), pp. 301–319], is used to construct analogues to the Aubry–Mather measures for nonconvex Hamiltonians. More precisely, a general construction of probability measures, which in the convex setting agree with Mather measures, is provided. These measures may fail to be invariant under the Hamiltonian flow and a dissipation arises, which is described by a positive semidefinite matrix of Borel measures. However, in the case of uniformly quasiconvex Hamiltonians the dissipation vanishes, and as a consequence the invariance is guaranteed. Copyright © 2011 Society for Industrial and Applied Mathematic

    Unraveling the senses of Phytophthora; leads to novel control strategies?

    Get PDF
    Oomycetes cause devastating diseases on plants and animals. They cause major yield losses in many crop plants and their control heavily depends on agrochemicals. This is certainly true for the potato late blight pathogen Phytophthora infestans. Strong concerns about adverse effects of agrochemicals on food safety and environment are incentives for the development of novel, environmental friendly control strategies preferably based on natural products. Cyclic lipopeptides (CLPs) were recently discovered as a new class of natural compounds with strong activities against oomycetes including Phytophthora. CLPs lyse zoospores, inhibit mycelial growth and effectively reduce late blight disease. In order to unravel how Phytophthora senses CLPs and other environmental signals we follow two approaches. On the one hand, we monitor genome wide changes in gene expression induced by CLPs with the aim to identify the cellular pathways targeted by CLPs. On the other hand, we analyse components of ubiquitous signal transduction pathways with the aim to identify features that are unique for Phytophthora or oomycetes and, hence, could be suitable targets for novel anti-oomycete agents. Mining and comparing whole genome sequences have revealed that Phytophthora harbours many novel phospholipid modifying enzymes, unique for oomycetes. They have aberrant combinations of catalytic and regulatory domains occasionally combined with transmembrane domains. The latter resemble receptors that might be activated by extracellular ligands. Phospholipids, the substrates of these enzymes, are structural membrane components that also function in signalling. Together these findings open new avenues of research aimed at target-discovery in oomycetes

    A Simple Nickel Catalyst Enabling an E‐Selective Alkyne Semihydrogenation

    Get PDF
    Stereoselective alkyne semihydrogenations are attractive approaches to alkenes, which are key building blocks for synthesis. With regards to the most atom economic reducing agent dihydrogen (H 2 ), only few catalysts for the challenging E ‐selective alkyne semihydrogenation have been disclosed, each with a unique substrate scope profile. Here, we show that a commercially available nickel catalyst facilitates the E ‐selective alkyne semihydrogenation of a wide variety of substituted internal alkynes. This results in a simple and broadly applicable overall protocol to stereoselectively access E ‐alkenes employing H 2 which could serve as a general method for synthesis.DFG, 352364740, Diwasserstoff-vermittelte nachhaltige BindungsknüpfungsreaktionenTU Berlin, Open-Access-Mittel - 201

    Optical analogue of spontaneous symmetry breaking induced by tachyon condensation in amplifying plasmonic arrays

    Get PDF
    We study analytically and numerically an optical analogue of tachyon condensation in amplifying plasmonic arrays. Optical propagation is modeled through coupled-mode equations, which in the continuous limit can be converted into a nonlinear one-dimensional Dirac-like equation for fermionic particles with imaginary mass, i.e. fermionic tachyons. We demonstrate that the vacuum state is unstable and acquires an expectation value with broken chiral symmetry, corresponding to the homogeneous nonlinear stationary solution of the system. The quantum field theory analogue of this process is the condensation of unstable fermionic tachyons into massive particles. This paves the way for using amplifying plasmonic arrays as a classical laboratory for spontaneous symmetry breaking effects in quantum field theory.Comment: 5 pages, 5 figure

    Submicrometric Films of Surface-Attached Polymer Network with Temperature-Responsive Properties

    Get PDF
    Temperature-responsive properties of surface-attached poly(N-isopropylacrylamide) (PNIPAM) network films with well-controlled chemistry are investigated. The synthesis consists of cross-linking and grafting preformed ene-reactive polymer chains through thiol--ene click chemistry. The formation of surface-attached and cross-linked polymer films has the advantage of being wellcontrolled without any caution of no-oxygen atmosphere or addition of initiators. PNIPAM hydrogel films with same cross-link density are synthesized on a wide range of thickness, from nanometers to micrometers. The swelling-collapse transition with temperature is studied by using ellipsometry, neutron reflectivity, and atomic force microscopy as complementary surface-probing techniques. Sharp and high amplitude temperature-induced phase transition is observed for all submicrometric PNIPAM hydrogel films. For temperature above LCST, surface-attached PNIPAM hydrogels collapse similarly but without complete expulsion of water. For temperature below LCST, the swelling of PNIPAM hydrogels depends on the film thickness. It is shown that the swelling is strongly affected by the surface attachment for ultrathin films below \sim150 nm. For thicker films above 150 nm (to micrometers), surface-attached polymer networks with the same cross-link density swell equally. The density profile of the hydrogel films in the direction normal to the substrate is confronted with in-plane topography of the free surface. It results that the free interface width is much larger than the roughness of the hydrogel film, suggesting pendant chains at the free surface.Comment: in Langmuir, American Chemical Society, 2015, LANGMUIR, 31 (42), pp.11516-1152

    Ultrasound enhancement of microfiltration performance for natural organic matter removal

    Get PDF
    Sonication of water at 1500 W power prior to microfiltration showed that short sonication times (60 s) gave a reduced flux decline. It is suggested that a less potent, smaller molecular form of the natural organic matter (NOM) was produced by sonication. Longer sonication times diminished this beneficial effect. This may be due to the formation of aggregates or compounds that are more readily adsorbed on the membrane. Where the sonication was preceded by an alum treatment, the flux loss showed a regular decrease with longer sonication times. It is suggested that the effects of sonication on the alum flocs and on the flocs; NOM interactions may play a critical role in regulating the flux. Where sand was present on sonication at 800 and 1400 W, the cavitational energy was focussed on adsorbed organic material, resulting in more efficient destruction and the formation of compounds that counteracted the flux enhancement
    corecore