33 research outputs found

    Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms

    Full text link
    A genetic predisposition for thoracic aortic aneurysms and dissections (TAAD) can be inherited in an autosomal dominant manner with decreased penetrance and variable expression. Four genes identified to date for familial TAAD account for approximately 20% of the heritable predisposition. In a cohort of 514 families with two or more members with presumed autosomal dominant TAAD, 48 (9.3%) families have one or more members who were at 50% risk to inherit the presumptive gene causing TAAD had an intracranial vascular event. In these families, gender is significantly associated with disease presentation ( P  < 0.001), with intracranial events being more common in women (65.4%) while TAAD events occurred more in men (64.2%,). Twenty‐nine of these families had intracranial aneurysms (ICA) that could not be designated as saccular or fusiform due to incomplete data. TGFBR1 , TGFBR2 , and ACTA2 mutations were found in 4 families with TAAD and predominantly fusiform ICAs. In 15 families, of which 14 tested negative for 3 known TAAD genes, 17 family members who were at risk for inheriting TAAD had saccular ICAs. In 2 families, women who harbored the genetic mutation causing TAAD had ICAs. In 2 additional families, intracranial, thoracic and abdominal aortic aneurysms were observed. This study documents the autosomal dominant inheritance of TAADs with saccular ICAs, a previously recognized association that has not been adequately characterized as heritable. In these families, routine cerebral and aortic imaging for at risk members could prevent cerebral hemorrhages and aortic dissections. © 2011 Wiley‐Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87019/1/34050_ftp.pd

    Severe aortic and arterial aneurysms associated with a TGFBR2 mutation.

    Get PDF
    BACKGROUND: A 24-year-old man presented with previously diagnosed Marfan\u27s syndrome. Since the age of 9 years, he had undergone eight cardiovascular procedures to treat rapidly progressive aneurysms, dissection and tortuous vascular disease involving the aortic root and arch, the thoracoabdominal aorta, and brachiocephalic, vertebral, internal thoracic and superior mesenteric arteries. Throughout this extensive series of cardiovascular surgical repairs, he recovered without stroke, paraplegia or renal impairment. INVESTIGATIONS: CT scans, arteriogram, genetic mutation screening of transforming growth factor beta receptors 1 and 2. DIAGNOSIS: Diffuse and rapidly progressing vascular disease in a patient who met the diagnostic criteria for Marfan\u27s syndrome, but was later rediagnosed with Loeys-Dietz syndrome. Genetic testing also revealed a de novo mutation in transforming growth factor beta receptor 2. MANAGEMENT: Regular cardiovascular surveillance for aneurysms and dissections, and aggressive surgical treatment of vascular disease

    Paucity of skeletal manifestations in hispanic families with FBN1 mutations

    No full text
    Marfan syndrome (MFS) is an autosomal dominant condition with pleiotropic manifestations involving the skeletal, ocular, and cardiovascular systems. The diagnosis is based primarily on clinical involvement of these and other systems, referred to as the Ghent criteria. We have identified three Hispanic families from Mexico with cardiovascular and ocular manifestations due to novel FBN1 mutations but with paucity of skeletal features. The largest family, hMFS001, had a frameshift mutation in exon 24 (3075delC) identified as the cause of aortic disease in the family. Assessment of eight affected adults revealed no major skeletal manifestation of MFS. Family hMFS002 had a missense mutation (R1530C) in exon 37. Four members fulfilled the criteria for ocular and cardiovascular phenotype but lacked skeletal manifestations. Family hMFS003 had two consecutive missense FBN1 mutations (C515W and R516G) in exon 12. Eight members fulfilled the ocular criteria for MFS and two members had major cardiovascular manifestations, however none of them met criteria for skeletal system. These data suggest that individuals of Hispanic descent with FBN1 mutations may not manifest skeletal features of the MFS to the same extent as Caucasians. We recommend that echocardiogram, ocular examination and FBN1 molecular testing be considered for any patients with possible MFS even in the absence of skeletal features, including Hispanic patients
    corecore