155 research outputs found

    A tight coupling between β\u3csub\u3e2\u3c/sub\u3eY97 and β\u3csub\u3e2\u3c/sub\u3eF200 of the GABA\u3csub\u3eA\u3c/sub\u3e receptor mediates GABA binding

    Get PDF
    The GABAA receptor is an oligopentameric chloride channel that is activated via conformation changes induced upon the binding of the endogenous ligand, GABA, to the extracellular inter-subunit interfaces. Although dozens of amino acid residues at the α/β interface have been implicated in ligand binding, the structural elements that mediate ligand binding and receptor activation are not yet fully described. In this study, double-mutant cycle analysis was employed to test for possible interactions between several arginines (α1R67, α1R120, α1R132, and β2R207) and two aromatic residues (β2Y97 and β2F200) that are present in the ligand-binding pocket and are known to influence GABA affinity. Our results show that neither α1R67 nor α1R120 is functionally coupled to either of the aromatics, whereas a moderate coupling exists between α1R132 and both aromatic residues. Significant functional coupling between β2R207 and both β2Y97 and β2F200 was found. Furthermore, we identified an even stronger coupling between the two aromatics, β2Y97 and β2F200, and for the first time provided direct evidence for the involvement of β2Y97 and β2F200 in GABA binding. As these residues are tightly linked, and mutation of either has similar, severe effects on GABA binding and receptor kinetics, we believe they form a single functional unit that may directly coordinate GABA

    Rateless codes-based secure communication employing transmit antenna selection and harvest-to-jam under joint effect of interference and hardware impairments

    Get PDF
    In this paper, we propose a rateless codes-based communication protocol to provide security for wireless systems. In the proposed protocol, a source uses the transmit antenna selection (TAS) technique to transmit Fountain-encoded packets to a destination in presence of an eavesdropper. Moreover, a cooperative jammer node harvests energy from radio frequency (RF) signals of the source and the interference sources to generate jamming noises on the eavesdropper. The data transmission terminates as soon as the destination can receive a sufficient number of the encoded packets for decoding the original data of the source. To obtain secure communication, the destination must receive sufficient encoded packets before the eavesdropper. The combination of the TAS and harvest-to-jam techniques obtains the security and efficient energy via reducing the number of the data transmission, increasing the quality of the data channel, decreasing the quality of the eavesdropping channel, and supporting the energy for the jammer. The main contribution of this paper is to derive exact closed-form expressions of outage probability (OP), probability of successful and secure communication (SS), intercept probability (IP) and average number of time slots used by the source over Rayleigh fading channel under the joint impact of co-channel interference and hardware impairments. Then, Monte Carlo simulations are presented to verify the theoretical results.Web of Science217art. no. 70

    Hybrid protocol for wireless EH network over weibull fading channel: performance analysis

    Get PDF
    In this paper, the hybrid TSR-PSR protocol for wireless energy harvesting (EH) relaying network over the Weibull fading channel is investigated. The system network is working in half-duplex (HD) mode. For evaluating the system performance, the closed-form and integral-form expressions of the outage probability (OP) are investigated and derived. After that, numerical results convinced that our derived analytical results are the same with the simulation results by using Monte Carlo simulation. This paper provides a novel recommendation for the wireless EH relaying network

    Energy harvesting half-duplex AF power splitting protocol relay network over rician channel in case of maximizing capacity

    Get PDF
    In this letter, we propose a novel power splitting protocol for energy harvesting half-duplex AF relaying communication systems. In our proposed system, the relay harvests energy from the source transmissions, by employing adaptive PS protocol, for powering the retransmissions to the destination. The proposed model system is investigated in cases maximize and non-maximize ergodic capacity. Firstly, we perform the analytical mathematical analysis for deriving the integral closed-form expression of the outage probability and the ergodic capacity. Then, the analytical analysis of the system performance can be convinced by Monte-Carlo simulation with helping Mat Lab software. Finally, the numerical analysis provides practical insights into the effect of various system parameters on the system performance of the proposed system. This paper can be considered as a recommendation for the energy harvesting communication network

    System Performance Analysis of Half-Duplex Relay Network over Rician Fading Channel

    Get PDF
    In this paper, the system performance of an amplify-and-forward (AF) relaying network over Rician Fading Channel is proposed, analyzed and demonstrated. For details this analysis, the energy and information are transferred from the source to the relay nodes by two methods: 1) time switching protocol and 2) power splitting protocol. Firstly, due to the constraint of the wireless energy harvesting at the relay node, the analytical mathematical expressions of the achievable throughput and the outage probability of both schemes were proposed and demonstrated. After that, the effect of various system parameters on the system performance is rigorously studied with closed-form expressions for the system performance. Finally, the analytical results are also demonstrated by Monte-Carlo simulation in comparison with the closed-form expressions. The numerical results demonstrated the effect of various system parameters, such as energy harvesting time, power splitting ratio, source transmission to noise power, and the threshold value, on the system performance of AF wireless relay nodes. The results show that the analytical mathematical and simulated results match for all possible parameter values for both schemes

    Lower and upper bound form for outage probability analysis in two-way of half-duplex relaying network under impact of direct link

    Get PDF
    In this paper, the system performance of the two-way of half-duplex (HD) relaying network under the impact of the direct link is studied. The model system has two sources (S) and one destination (D) communicate by direct link and via relay (R). For system performance analysis, we derived the lower and upper bound for outage probability (OP). Furthermore, the analytical expressions of the system performance are verified by using the Monte Carlo simulation in the effect of main parameters. As shown in the results, we can the simulation and analytical results have a good agreement

    Secrecy performance enhancement for underlay cognitive radio networks employing cooperative multi-hop transmission with and without presence of hardware impairments

    Get PDF
    In this paper, we consider a cooperative multi-hop secured transmission protocol to underlay cognitive radio networks. In the proposed protocol, a secondary source attempts to transmit its data to a secondary destination with the assistance of multiple secondary relays. In addition, there exists a secondary eavesdropper who tries to overhear the source data. Under a maximum interference level required by a primary user, the secondary source and relay nodes must adjust their transmit power. We first formulate effective signal-to-interference-plus-noise ratio (SINR) as well as secrecy capacity under the constraints of the maximum transmit power, the interference threshold and the hardware impairment level. Furthermore, when the hardware impairment level is relaxed, we derive exact and asymptotic expressions of end-to-end secrecy outage probability over Rayleigh fading channels by using the recursive method. The derived expressions were verified by simulations, in which the proposed scheme outperformed the conventional multi-hop direct transmission protocol.Web of Science212art. no. 21

    Exploiting direct link in two-way half-duplex sensor network over block Rayleigh fading channel: Upper bound Ergodic capacity and exact SER analysis

    Get PDF
    Relay communication, in which the relay forwards the signal received by a source to a destination, has a massive consideration in research, due to its ability to expand the coverage, increase the capacity, and reduce the power consumption. In this paper, we proposed and investigated energy harvesting (EH) based two-way half-duplex (TWHD) relaying sensors network using selection combining (SC) over block Rayleigh fading channel. In this model, we proposed the direct link between two sources for improving the system performance. For the system performance analysis, we investigated and derived the closed-form of the exact and upper bound Ergodic capacity (EC) and the exact form of the symbol error ratio (SER). By using the Monte Carlo simulation, the correctness of the research results is verified in the influence of the main system parameters. From the discussions, we can see that the analytical and simulation agree well with each other.Web of Science204art. no. 116

    Lower and upper bound intercept probability analysis in amplifier-and-forward time switching relaying half-duplex with impact the eavesdropper

    Get PDF
    In this paper, we proposed and investigated the amplifier-and-forward (AF) time switching relaying half-duplex with impact the eavesdropper. In this system model, the source (S) and the destination (D) communicate with each other via a helping of the relay (R) in the presence of the eavesdropper (E). The R harvests energy from the S and uses this energy for information transferring to the D. For deriving the system performance, the lower and upper bound system intercept probability (IP) is proposed and demonstrated. Furthermore, the Monte Carlo simulation is provided to justify the correctness of the mathematical, analytical expression of the lower and upper bound IP. The results show that the analytical and the simulation curves are the same in connection with the primary system parameters
    corecore