2,591 research outputs found

    Neutrino masses and mixings in SO(10)

    Get PDF
    Assuming a Zee-like matrix for the right-handed neutrino Majorana masses in the see-saw mechanism, one gets maximal mixing for vacuum solar oscillations, a very small value for Ue3U_{e3} and an approximate degeneracy for the two lower neutrino masses. The scale of right-handed neutrino Majorana masses is in good agreement with the value expected in a SO(10) model with Pati-Salam SU(4)\ts SU(2)\ts SU(2) intermediate symmetry.Comment: 11 pages, no figures. References adde

    Fully exclusive heavy quark-antiquark pair production from a colourless initial state at NNLO in QCD

    Get PDF
    We present a local subtraction scheme for computing next-to-next-to-leading order QCD corrections to the production of a massive quark-antiquark pair from a colourless initial state. The subtraction terms are built following the CoLoRFulNNLO method and refined in such a way that their integration gives rise to compact, fully analytic expressions. All ingredients necessary for a numerical implementation of our subtraction scheme are provided in detail. As an example, we calculate the fully differential decay rate of the Standard Model Higgs boson to massive bottom quarks at next-to-next-to-leading order accuracy in perturbative QCD

    Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO

    Get PDF
    We consider QCD radiative corrections to Standard Model Higgs boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bbbar pair. We present selected numerical results at the Tevatron and the LHC.Comment: 7 pages, 2 figure

    Selective asymmetry of ocular vestibular-evoked myogenic potential in patients with acute utricular macula loss

    Get PDF
    OBJECTIVES: We retrospectively evaluated a chart review of 3,525 patients evaluated for any acute disturbance. A total of 1,504 patients with acute vestibular syndrome (AVS) received an instrumental vestibular assessment within 72 h from the onset of the symptoms evaluated using simultaneously a combination of ocular vestibular-evoked myogenic potential (oVEMPs), cervical vestibular-evoked myogenic potential (cVEMPs), video head-impulse test (vHIT), and subjective visual vertical (SVV) were included in this study. MATERIALS and METHODS: A total of 41 patients with AVS that showed a normal horizontal canal function tested with vHIT, a normal cVEMP function, unilaterally reduced or absent oVEMP n10, and an altered SVV were enrolled. RESULTS: We found that although these patients referred acute vertigo and presented spontaneous nystagmus, they showed physiological values of vHIT and a normal saccular function, as shown by symmetrical cVEMPs. CONCLUSION: Our findings support the hypothesis that a percentage of patients evaluated during an AVS using an instrumental vestibular assessment could present selective utricular macula dysfunction

    Exact top Yukawa corrections to Higgs boson decay into bottom quarks

    Get PDF
    In this letter we present the results of the exact computation of contributions to the Higgs boson decay into bottom quarks that are proportional to the top Yukawa coupling. Our computation demonstrates that approximate results already available in the literature turn out to be particularly accurate for the three physical mass values of the Higgs boson, the bottom and top quarks. Furthermore, contrary to expectations, the impact of these corrections on differential distributions relevant for the searches of the Higgs boson decaying into bottom quarks at the Large Hadron Collider is rather small

    NLO QCD corrections to the production of Higgs plus two jets at the LHC

    Full text link
    We present the calculation of the NLO QCD corrections to the associated production of a Higgs boson and two jets, in the infinite top-mass limit. We discuss the technical details of the computation and we show the numerical impact of the radiative corrections on several observables at the LHC. The results are obtained by using a fully automated framework for fixed order NLO QCD calculations based on the interplay of the packages GoSam and Sherpa. The evaluation of the virtual corrections constitutes an application of the d-dimensional integrand-level reduction to theories with higher dimensional operators. We also present first results for the one-loop matrix elements of the partonic processes with a quark-pair in the final state, which enter the hadronic production of a Higgs boson together with three jets in the infinite top-mass approximation.Comment: 9 pages, 7 figures, references added, published in Phys.Lett.

    Leptons in the proton

    Get PDF
    As is the case for all light coloured Standard Model particles, also photons and charged leptons appear as constituents in ultrarelativistic hadron beams, and admit a parton density function (PDF). It has been shown recently that the photon PDF can be given in terms of the structure functions and form factors for electron-proton scattering. The same holds for lepton PDFs. In the present work we set up a calculation of the lepton PDFs at next-to-leading order, using the same data input needed in the photon case. A precise knowledge of the lepton densities allows us to study lepton-initiated processes even at a hadron collider, with all possible combinations of same-charge, opposite-charge, same-flavour, different-flavour leptons and leptons-quarks, most of which cannot be realized in any other forseable experiment. The lepton densities in the proton are extremely small, so that their contribution to Standard Model processes is generally shadowed by processes initiated by coloured partons. We will show, however, that there are cases where these processes can be relevant, giving rise to rare Standard Model signatures and to new production channels, that can enlarge the discovery potential of New Physics at the LHC and future high energy colliders with hadrons in the initial state

    GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond

    Get PDF
    We present the version 2.0 of the program package GoSam for the automated calculation of one-loop amplitudes. GoSam is devised to compute one-loop QCD and/or electroweak corrections to multi-particle processes within and beyond the Standard Model. The new code contains improvements in the generation and in the reduction of the amplitudes, performs better in computing time and numerical accuracy, and has an extended range of applicability. The extended version of the "Binoth-Les-Houches-Accord" interface to Monte Carlo programs is also implemented. We give a detailed description of installation and usage of the code, and illustrate the new features in dedicated examples.Comment: replaced by published version and reference adde
    • …
    corecore