102 research outputs found

    Using Mendelian Randomization to Decipher Mechanisms of Bone Disease

    Get PDF
    Purpose of Review: This review summarizes the basic principles of Mendelian randomization (MR) and provides evidence for the causal effect of multiple modifiable factors on bone outcomes. Recent Findings: Several studies using MR approach have provided support for the causal effect of obesity on bone mineral density (BMD). Strikingly, studies have failed to prove a causal association between elevated 25(OH) D concentrations and higher BMD in community-dwelling individuals. Summary: The MR approach has been successfully used to evaluate multiple factors related to bone mineral density variation and/or fracture risk. The MR approach avoids some of the classical observational study limitations and provides more robust causal evidence, ensuring bigger success of the clinical trials. The selection of interventions based on genetic evidence could have a substantial impact on clinical practice

    Are some children genetically predisposed to poor sleep? A polygenic risk study in the general population

    Get PDF
    Background: Twin studies show moderate heritability of sleep traits: 40% for insomnia symptoms and 46% for sleep duration. Genome-wide association studies (GWAS) have identified genetic variants involved in insomnia and sleep duration in adults, but it is unknown whether these variants affect sleep during early development. We assessed whether polygenic risk scores for insomnia (PRS-I) and sleep duration (PRS-SD) affect sleep throughout early childhood to adolescence. Methods: We included 2,458 children of European ancestry (51% girls). Insomnia-related items of the Child Behavior Checklist were reported by mothers at child's age 1.5, 3, and 6 years. At 10–15 years, the Sleep Disturbance Scale for Children and actigraphy were assessed in a subsample (N = 975). Standardized PRS-I and PRS-SD (higher scores indicate genetic susceptibility for insomnia and longer sleep duration, respectively) were computed at multiple p-value thresholds based on largest GWAS to date. Results: Children with higher PRS-I had more insomnia-related sleep problems between 1.5 and 15 years (BPRS-I &lt; 0.001 =.09, 95% CI: 0.05; 0.14). PRS-SD was not associated with mother-reported sleep problems. A higher PRS-SD was in turn associated with longer actigraphically estimated sleep duration (BPRS-SD &lt; 5e08 =.05, 95% CI: 0.001; 0.09) and more wake after sleep onset (BPRS-SD &lt; 0.005 =.25, 95% CI: 0.04; 0.47) at 10–15 years, but these associations did not survive multiple testing correction. Conclusions: Children who are genetically predisposed to insomnia have more insomnia-like sleep problems, whereas those who are genetically predisposed to longer sleep have longer sleep duration, but are also more awake during the night in adolescence. This indicates that polygenic risk for sleep traits, based on GWAS in adults, affects sleep already in children.</p

    Recent advances in the genetics of fractures in osteoporosis

    Get PDF
    Genetic susceptibility, together with old age, female sex, and low bone mineral density (BMD) are amongst the strongest determinants of fracture risk. Tmost recent large-scale genome-wide association study (GWAS) meta-analysis has yielded fifteen loci. This review focuses on the advances in the research of genetic determinants of fracture risk. We first discuss the genetic architecture of fracture risk, touching upon different methods and overall findings. We then discuss in a second paragraph the most recent advances in the field and focus on the genetics of fracture risk and also of other endophenotypes closely related to fracture risk such as bone mineral density (BMD). Application of state-of-the-art methodology such as Mendelian randzation in fracture GWAS are reviewed. The final part of this review touches upon potential future directions in genetic research of osteoporotic fractures

    The association between dietary protein intake, energy intake and physical frailty : results from the Rotterdam Study

    Get PDF
    Sufficient protein intake has been suggested to be important for preventing physical frailty, but studies show conflicting results which may be explained because not all studies address protein source and intake of other macronutrients and total energy. Therefore, we studied 2504 subjects with data on diet and physical frailty, participating in a large population-based prospective cohort among subjects aged 45+ years (the Rotterdam Study). Dietary intake was assessed with a FFQ. Frailty was defined according to the frailty phenotype as the presence of at least three out of the following five symptoms: weight loss, low physical activity, weakness, slowness and fatigue. We used multinomial logistic regression models to evaluate the independent association between protein intake and frailty using two methods: nutrient residual models and energy decomposition models. With every increase in 10 g total, plant or animal protein per d, the odds to be frail were 1·06 (95 % CI 0·98, 1·15), 0·87 (95 % CI 0·71, 1·07) and 1·07 (95 % CI 0·99, 1·15), respectively, using the nutrient residual method. Using the energy partition model, we observed that the odds to be frail were lower with higher vegetable protein intake (OR per 418·4 kJ (100 kcal): 0·61, 95 % CI 0·39, 0·97), however, results disappeared when adjusting for physical activity. For energy intake from any source we observed that with every 418·4 kJ (100 kcal) increase, the odds to be frail were 5 % lower (OR: 0·95, 95 % CI 0·93, 0·97). Our results suggest that energy intake, but not protein specifically, is associated with less frailty. Considering other macronutrients, physical activity and diet quality seems to be essential for future studies on protein and frailty

    Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study

    Full text link
    Objectives To identify the genetic determinants of fracture risk and assess the role of 15 clinical risk factors on osteoporotic fracture risk. Design Meta-analysis of genome wide association studies (GWAS) and a two-sample mendelian randomisation approach. Setting 25 cohorts from Europe, United States, east Asia, and Australia with genome wide genotyping and fracture data. Participants A discovery set of 37 857 fracture cases and 227 116 controls; with replication in up to 147 200 fracture cases and 150 085 controls. Fracture cases were defined as individuals (>18 years old) who had fractures at any skeletal site confirmed by medical, radiological, or questionnaire reports. Instrumental variable analyses were performed to estimate effects of 15 selected clinical risk factors for fracture in a two-sample mendelian randomisation framework, using the largest previously published GWAS meta-analysis of each risk factor. Results Of 15 fracture associated loci identified, all were also associated with bone mineral density and mapped to genes clustering in pathways known to be critical to bone biology (eg, SOST, WNT16, and ESR1) or novel pathways (FAM210A, GRB10, and ETS2). Mendelian randomisation analyses showed a clear effect of bone mineral density on fracture risk. One standard deviation decrease in genetically determined bone mineral density of the femoral neck was associated with a 55% increase in fracture risk (odds ratio 1.55 (95% confidence interval 1.48 to 1.63; P=1.5×10−68). Hand grip strength was inversely associated with fracture risk, but this result was not significant after multiple testing correction. The remaining clinical risk factors (including vitamin D levels) showed no evidence for an effect on fracture. Conclusions This large scale GWAS meta-analysis for fracture identified 15 genetic determinants of fracture, all of which also influenced bone mineral density. Among the clinical risk factors for fracture assessed, only bone mineral density showed a major causal effect on fracture. Genetic predisposition to lower levels of vitamin D and estimated calcium intake from dairy sources were not associated with fracture risk

    Sarcopenia in COPD: a systematic review and meta-analysis

    Get PDF
    COPD is associated with a progressive loss of muscle mass and function. However, there is an unmet need to define and standardise methods to estimate the prevalence of sarcopenia in COPD patients.We performed a systematic review and meta-analysis of the prevalence of this extrapulmonary manifestation in COPD patients. We searched Embase, Medline (Ovid), CINAHL (EBSCO), Web of Science, Scopus and Google Scholar for studies published up to January 17, 2019, assessing sarcopenia in COPD patients based on low muscle mass and decreased muscle function. Interventional studies, in vitro experiments, protocols or reviews and meta-analyses were excluded. We estimated heterogeneity (I2) and assessed significance (Q) using a Chi-squared test for estimates obtained from random-effects models.4465 articles were initially identified. After removing the duplicates and applying the selection criteria, we reviewed 62 full-text articles. Finally, 10 articles (n=2565 COPD patients) were included in this systematic review and meta-analyses. Overall, the prevalence of sarcopenia in patients with COPD was 21.6% (95% CI 14.6-30.9%, I2=94%), ranging from 8% in population-based to 21% in clinic-based studies, and 63% in COPD patients residing in nursing homes.Sarcopenia is frequently observed in COPD patients, with varying prevalence across population settings. Sarcopenia in COPD should be assessed using standardised tests and cut-off points from sarcopenia consensus criteria for clinical practice and international comparisons

    Sarcopenia in older people with chronic airway diseases : the Rotterdam study

    Get PDF
    Sarcopenia is a heterogeneous skeletal muscle disorder involving the loss of muscle mass and function. However, the prevalence of sarcopenia based on the most recent definition remains to be determined in older people with chronic airway diseases. The aim was to evaluate sarcopenia prevalence and association with chronic airway diseases and its lung function in an older population, using the European Working Group on Sarcopenia in Older People 2 (EWGSOP2) criteria. We performed a cross-sectional analysis in 5082 participants (mean age 69.0 +/- 8.8 years, 56% females) from the Rotterdam Study. Participants with interpretable spirometry and an available assessment of sarcopenia were included. The appendicular skeletal muscle mass index (ASMI) and handgrip strength (HGS) were assessed using dual-energy X-ray absorptiometry (DXA) and a hydraulic hand dynamometer, respectively. We analysed the association between sarcopenia and chronic airway diseases by using regression models adjusted for age, sex, smoking status, total fat percentage and other relevant confounders. Participants with chronic airway diseases had higher prevalence of probable sarcopenia (12.0%, 95% CI 10.2-13.8) and confirmed sarcopenia (3.0%, 95% CI 2.1-3.9) than without. Chronic airway diseases were associated with "probable sarcopenia" (OR 1.28, 95% CI 1.02-1.60), "confirmed sarcopenia" (OR 2.13, 95% CI 1.33-3.43), reduced HGS (beta -0.51 (-0.90-0.11)) and reduced ASMI (beta -0.19 (-0.25-0.14)). Forced expiratory volume in 1 s <80% was associated with lower HGS (beta -1.03 (-1.75-0.31)) and lower ASMI (beta -0.25 (-0.36-0.15)) than forced expiratory volume in 1 s.80%. Sarcopenia was prevalent and associated with chronic airway diseases among older population. These results suggest the need for early diagnosis of sarcopenia in older people with chronic airway diseases by applying EWGSOP2 recommendations

    Identifying potential causal effects of age at menarche: A Mendelian randomization phenome-wide association study

    Get PDF
    Background: Age at menarche has been associated with various health outcomes. We aimed to identify potential causal effects of age at menarche on health-related traits in a hypothesis-free manner. Methods: We conducted a Mendelian randomization phenome-wide association study (MR-pheWAS) of age at menarche with 17,893 health-related traits in UK Biobank (n = 181,318) using PHESANT. The exposure of interest was the genetic risk score for age at menarche. We conducted a second MR-pheWAS after excluding SNPs associated with BMI from the genetic risk score, to examine whether results might be due to the genetic overlap between age at menarche and BMI. We followed up a subset of health-related traits to investigate MR assumptions and seek replication in independent study populations. Results: Of the 17,893 tests performed in our MR-pheWAS, we identified 619 associations with the genetic risk score for age at menarche at a 5% false discovery rate threshold, of which 295 were below a Bonferroni-corrected P value threshold. These included potential effects of younger age at menarche on lower lung function, higher heel bone-mineral density, greater burden of psychosocial/mental health problems, younger age at first birth, higher risk of childhood sexual abuse, poorer cardiometabolic health, and lower physical activity. After exclusion of variants associated with BMI, the genetic risk score for age at menarche was related to 37 traits at a 5% false discovery rate, of which 29 were below a Bonferroni-corrected P value threshold. We attempted to replicate findings for bone-mineral density, lung function, neuroticism, and childhood sexual abuse using 5 independent cohorts/consortia. While estimates for lung function, higher bone-mineral density, neuroticism, and childhood sexual abuse in replication cohorts were consistent with UK Biobank estimates, confidence intervals were wide and often included the null. Conclusions: The genetic risk score for age at menarche was related to a broad range of health-related traits. Follow-up analyses indicated imprecise evidence of an effect of younger age at menarche on greater bone-mineral density, lower lung function, higher neuroticism score, and greater risk of childhood sexual abuse in the smaller replication samples available; hence, these findings need further exploration when larger independent samples become available

    The association between metabolic syndrome, bone mineral density, hip bone geometry and fracture risk: The Rotterdam study

    Get PDF
    The association between metabolic syndrome (MS) and bone health remains unclear. We aimed to study the association between MS and hip bone geometry (HBG), femoral neck bone mineral density (FN-BMD), and the risk of osteoporosis and incident fractures. Data of 2040 women and 1510 men participants in the third visit (1997-1999) of the Rotterdam Study (RSI-3), a prospective population based cohort, were available (mean follow-up 6.7 years). MS was defined according to the recent harmonized definition. HBG parameters were measured at the third round visit whereas FN-BMD was assessed at the third round and 5 years later. Incident fractures were identified from medical registry data. After correcting for age, body mass index (BMI), lifestyle factors and medication use, individuals with MS had lower bone width (β = -0.054, P = 0.003), lower cortical buckling ratio (β = -0.81, P = 0.003) and lower odds of having osteoporosis (odds ratio =0.56, P = 0.007) in women but not in men. Similarly, MS was associated with higher FN-BMD only in women (β = 0.028, P=0.001). In the analyses of MS components, the glucose component (unrelated to diabetes status) was positively associated with FN-BMD in both genders (β = 0.016, P = 0.01 for women and β = 0.022, P = 0.004 for men). In men, waist circumference was inversely associated with FN-BMD (β = -0.03, P = 0.004). No association was observed with fracture risk in either sex. In conclusion, women with MS had higher FN-BMD independent of BMI. The glucose component of MS was associated with high FN-BMD in both genders, highlighting the need to preserve glycemic control to prevent skeletal complications

    Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women

    Get PDF
    © 2021, The Author(s). Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256, 523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1p = 4 × 10−17), arthritis (GDF5p = 4 × 10−13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing
    • …
    corecore