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Abstract
Purpose of Review This review summarizes the basic principles ofMendelian randomization (MR) and provides evidence for the
causal effect of multiple modifiable factors on bone outcomes.
Recent Findings Several studies using MR approach have provided support for the causal effect of obesity on bone mineral
density (BMD). Strikingly, studies have failed to prove a causal association between elevated 25(OH) D concentrations and
higher BMD in community-dwelling individuals.
Summary The MR approach has been successfully used to evaluate multiple factors related to bone mineral density variation
and/or fracture risk. The MR approach avoids some of the classical observational study limitations and provides more robust
causal evidence, ensuring bigger success of the clinical trials. The selection of interventions based on genetic evidence could have
a substantial impact on clinical practice.
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Introduction

A fundamental goal of epidemiological (observational) studies
is to determine causal factors of diseases. However, in obser-
vational studies, we test for association, which by itself does
not imply causation. Two logical fallacies cum hoc ergo
propter hoc (“with this, therefore because of this”) and post
hoc ergo propter hoc (“after this, therefore because of this”)
challenge the interpretation of observational studies. The rela-
tionship between exposure (expected cause) and disease (ex-
pected outcome) can be distorted by (a) the presence of unmea-
sured or unaccounted confounders, (b) reverse causation, and
(c) a variety of other potential biases. Although proper study
designs and analytical approaches can minimize the effect of
the aforementioned factors, we still fail to account for most of
them. Therefore, interventions based exclusively on evidence
derived from association studies might turn out fruitless.

Some factors and biomarkers identified in observational
studies have failed to be confirmed by large, robust random-
ized control trials (RCTs). For instance, in the past several
years, observational studies [1–3] and one small RCT [4] have
provided encouraging evidence for the beneficial effect of the
vitamin D and calcium supplements on bone health. Thus,
vitamin D and calcium supplementation have been included
in the clinical guidelines for osteoporosis management and
fracture prevention [5, 6]. However, in the past years, from a
total of 38 RCTs (14 large and 24 small), the majority failed to
detect a benefit of vitamin D and calcium supplements [7–9].
Moreover, a small proportion of the trials have found modest
protective effects [10], and some have even shown an in-
creased harm (e.g., falls, fractures) [11]. Even though experi-
mental [randomized] studies are considered to be the gold
standard for estimating causality in research [12], they have
their own caveats like limitations due to ethical and technical
issues and the exposure cannot be randomized, or being time-
consuming and frequently costly [13]. Moreover, the lack of
external validity (generalizability of the treatment/condition
outcomes) affects the reliability of the results from the
RCTs, which may result in flawed policy recommendations.
In order to overcome the limitations from the observational
and experimental studies, up till now, many methods
(conditioning, mechanism-based, natural experiments) for
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causal inference have been developed that can be easily ap-
plied in epidemiological settings and can improve the identi-
fication of clinically relevant risk factors. Mendelian random-
ization is one of them. The aim of this review is to explain the
basic principles of Mendelian randomization and provide ex-
amples of how Mendelian randomization has been applied to
bone research.

Casual Inference: Mendelian Randomization
Analysis and Principles

Mendelian randomization plays an important role in causal
inference. During conception, parental gametes combine to
form a zygote. Each gamete contains a different set of DNA
as a result of recombination and independent assortment dur-
ing conception resulting in genetically defined subgroups of
individuals. The Mendelian randomization (MR) design is
considered to be analogous to a RCT [14] where instead of
random allocation of participants to interventions (treatments
or preventive measures) individuals are randomized by nature
according to carriership of gene variants that regulate suscep-
tibility to a specific exposure (Fig. 1).Within both approaches,
individuals are divided into random groups balanced across
confounding factor(s). Following this principle, genetic vari-
ants associated with specific risk factors can be used as a non-
confounded proxy to investigate the causal association be-
tween the risk factor in question and disease outcomes.
Moreover, genetic variants have the advantages of being
largely fixed since conception and remain stable throughout
life. The expansion of genome wide association studies
(GWAS) and improvement in array and imputations panels
has enabled well-powered settings facilitating the identifica-
tion of numerous genetic variants associated with different
diseases and complex traits. Such large yield in genetic dis-
coveries propelled by large-scale GWAS has improved con-
siderably the extent of explained trait variance and the pros-
pect of risk prediction of common diseases [15]. This also
means that the MR approach leveraged by the abundance of
genetic discoveries can now be easily implemented across
numerous observational settings. This way, the MR approach
can provide prior knowledge before launching RCTs or it can
give way to more valid estimates of causal relationships in
situations where an RCT cannot be conducted (e.g., smoking
and alcohol intake). If MR findings provide evidence of cau-
sality for a specific marker, the next step will be to identify the
correct biological pathway before performing RCTs. In addi-
tion, the MR is a simple and cost-effective method to assess
causal relationships between risk factors and health outcomes.
In order to obtain unbiased estimates, three key assumptions
of MR need to be fulfilled with regard to the instrument: (1)
genetic variants are associated with the risk factors or bio-
markers under study; (2) genetic variants should not be

associated with known confounding factors; and (3) it affects
the outcome only through the risk factor and not via other
biological pathways (pleiotropy) (Fig. 2). The first assumption
can be easily verified by exploring the data. Even if this as-
sumption holds, we need to test the strength of the association
between the genetic variants and exposure (e.g., using partial
F statistic) to avoid week instrument bias [16]. The second and
third assumption can be difficult to address. First, we cannot
estimate the association between the genetic variant and un-
observed confounders (second assumption). However, we can
still test the association with observed potential confounding
factors or/and search the literature for any reported associa-
tions. Second, the presence of pleiotropy (third assumption)
can be indirectly detected and corrected by using robust sta-
tistical methods [17] (e.g., MR-Egger regression, median
weighted). In short, Egger regression assumes that the pleio-
tropic effect of the variant is independent of the phenotypic
effect. If the pleiotropic effects act via a confounder of the
“exposure-outcome” association, this assumption will be vio-
lated. Moreover, this will affect its associations with both the
exposure and the outcome indicating the potential presence of
directional pleiotropy. Finally, if the above assumptions hold,
the MR can give reliable evidence for causation overcoming
the typical pitfalls present in observational studies.

Mendelian Randomization Debunks
the Findings from Observational Studies:
an Example

It is well established that heavy alcohol drinking during preg-
nancy has a serious effect on diverse health outcomes of the
children [18]. Currently, there is no known safe level of alco-
hol that can be consumed at any time during pregnancy.
However, many women do drink alcohol during pregnancy,
generally at a moderate level, as a result of the conflicting
messages from the health guidelines. Some of them promote
complete abstinence while others recommendmoderate drink-
ing. These contradicting messages largely reflect the inconsis-
tent findings from observational studies. For example, some
observational studies have found that moderate drinking dur-
ing pregnancy is even associated with a better cognitive func-
tion in children [19]. Nonetheless, the association can be con-
founded by many socio-economic factors. Taking all these
confounders into consideration does attenuate the association,
but does not eliminate the effect fully possibly due to residual
confounding [20].

Alcohol is metabolized in the body by several alcohol dehy-
drogenase (ADH) enzymes. Variation in the genes that encode
these enzymes influences the metabolic rate of alcohol [21].
Slow metabolizers will be exposed to higher alcohol levels
for a longer time compared to fast metabolizers. Thus, it is
hypothesized that alleles which increase the metabolism of
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Fig. 2 Directed acyclic graph (DAG) represents the relationship in a typical Mendelian randomization model

Fig. 1 Comparison of the design of Mendelian randomization study and a randomized controlled trial
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ethanol will protect against abnormal brain development in in-
fants [20] (as a result of less pronounced exposure to alcohol).
For example, researchers of the Avon Longitudinal Study of
Parents and Children (ALSPAC, UK-based children cohort)
found that four genetic variants in alcohol metabolizing genes
were related to low IQ at age 8 in children (carriers of the
“slow”metabolizing alleles) whose mothers were drinking dur-
ing pregnancy [22]. Moreover, in the same study, Zuccolo et al.
[20] found the same association observed by previous studies
when using the observational approach, i.e., moderate drinking
is associated with increased IQ. However, using the MR meth-
od, they found that children of mothers genetically predisposed
to drink less were better at school than children of mothers
genetically predisposed to drink more [20]. This example illus-
trates the benefits of theMR approach; considering that most of
the observational studies found associations in the same direc-
tion, the MR studies disproved them. MR becomes quite rele-
vant in those scenarios where the association under study is
confounded by multiple factors (alcohol and cognition in this
case). Other examples include studies examining the causal role
of CRP [23], lipoprotein (a) [24], and vitaminD levels [25] with
different cardiovascular outcomes, or the association of homo-
cysteine levels with diabetes mellitus [26].

Mendelian Randomization in Bone Biology

The human skeleton is made of a dynamically growing tissue,
essential for locomotion, structural support of soft tissues, and
protection of organs. In addition, the skeleton exerts metabolic
functions providing a mineral reservoir (primarily for calcium,
but also for magnesium and phosphorus) and serves as a de-
pository for cytokines and growth factors that upon release
can exert local and systemic effects. Bones are constantly
reshaped and renewed throughout the lifespan, through the
processes of modeling and remodeling, which are under ge-
netic and environmental control. Modeling occurs in growing
bones from birth to the mid-20s, when peak bone mass is
achieved. With aging, the imbalance in bone remodeling leads
to loss of bonemass and deterioration of bone structure, which
predispose to osteoporosis and fracture. An individual’s peak
bone mass ultimately relates to lifetime risk of fracture (i.e.,
the higher the peak bone mass, the lower the risk). Yet,
partitioning the genetic and environmental influences (risk
factors) exerting an effect on bone throughout the lifetime is
not trivial. TheMendelian randomization (MR) approach pro-
vides means to assess the influence of risk factors on osteo-
porosis outcomes, including fracture.

To date, the MR approach in the bone field has been applied
predominantly to assess cause-effect relationships between dif-
ferent risk factors or biomarkers in relation to bone mineral
density as outcome (Table 1). Among these body composition
factors, inflammation markers and vitamin D levels are the

most frequently investigated exposures. In particular, MR anal-
yses have clearly reinforced the role of low BMI as an impor-
tant risk factor for loss of bone mass [27••, 28, 29]. Similarly,
late puberty [30] and type 2 diabetes and associated glycemic
traits [31•] have been shown to exert modest causal effects on
bone outcomes; in contrast, genetically increased inflammation
markers [32, 33], phosphate [34] (very low powered), and
higher urate levels [35, 36] had no causal effect on skeletal
outcomes including fracture risk. A recent study has found a
modest effect of heel BMD on type 2 diabetes and coronary
heart disease, opening the door of evaluating deeper the endo-
crine function of the bone [37]. Notably, studies investigating
the causal role of vitamin D andmilk calcium intake showed no
evidence of association [38, 39, 40•, 41].

Vitamin D and Bone Mineral Density

Vitamin D is required for normal bone maturation, formation,
and mineralization. Low levels of vitamin D result in hypocal-
cemia, hypophosphatemia, and hyperparathyroidism, which in
turn can lead to impaired mineralization, bone loss, and low
BMD levels. Severe lack of vitamin D is known to cause rickets
(in children) and osteomalacia (in adults) [42]. Nevertheless, the
influence of vitamin D on the etiology of low bone mass and the
predisposition to develop osteoporosis is still unclear due to in-
consistent results across clinical studies. These differences can be
attributable to aspects of study design (e.g., study power, type of
recruited population, or aspects affecting the vitamin Dmeasure-
ment, like season, thresholds, assays among others).

There are four SNPs found by GWAS to be strongly associ-
ated with 25(OH) D levels, mapping back to genes implicated
in vitamin D synthesis, transport, or metabolism. These include
rs2282679 inGC (association with 25(OH)D: p = 1.9 × 10−109),
rs12785878 near DHCR7 (p = 2.1 × 10−27), rs10741657 near
CYP2R1 (p = 3.3 × 10−20), and rs6013897 in CYP24A1 (p =
6.0 × 10−10) [43]. The vitamin D-binding protein (DBP), a
group-specific component of serum alpha globulin, is encoded
by the GC gene and it serves as the principal protein carrier for
vitamin D and its metabolites [44]. On the other hand, the
DHCR7 gene produces cholesterol, a substrate for vitamin D
production. Finally, CYP2R1 (encoding 25(OH) D synthesis)
and CYP24A1 (encoding 1α25(OH)2D inactivation) provide
the active form of vitamin D.

Three studies have scrutinized if the relationship between
vitamin D and BMD is causal. Leong et al. [38] have investi-
gated the causal relationship between vitamin D-binding pro-
tein (DBP) levels and BMD using individual level data (N =
2254) from the Canadian Multicentre Osteoporosis Study
(CaMos). In line with their observational results, they showed
that DBP might not be a critical player in causal pathways
potentially linking vitamin D to BMD. The authors also over-
came the sample size limitations of the individual level setting
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by performing an additional analysis using summary data
from the well-powered SUNLIGHT and GEFOS consortia
where the null results remained consistent. Furthermore, Li
et al. [39] using the four aforementioned vitamin D-
associated SNPs found no evidence for a causal effect of vi-
tamin D levels on BMD and bone turnover markers in a pop-
ulation of Chinese postmenopausal women (N = 1824).
Finally, Larsson et al. [40•] using data from the GEFOS con-
sortium and UK BioBank study have also recently found that
vitamin D levels had no effect on DXA-measured BMD (N =
32,965). However, they observed that elevated vitamin D
levels could exert a small decrease in estimated BMD derived
from heel ultrasound (N = 142,487). Although the genetic var-
iants have modest effects on vitamin D levels and explain
small proportion of the trait variance, the aforementioned
studies using summary level data were well powered to inves-
tigate causal associations. Very recently, we have also shown
lack of a causal relationship between vitamain D levels and
fractured risk, investigated in 37,857 cases and 227 116 con-
trols [45].

These results should be interpreted with caution since the
MR efforts have examined a linear relationship between vita-
min D levels and BMD. Possible threshold-dependent effects
(effects present only in a subgroup with low vitamin D levels)
are not examined by this approach. Extreme deficits in vitamin
D are known to influence bone metabolism and result in dis-
ease (i.e., rickets, osteomalacia). In contrast, the MR setting is
drawn in the general population, typically including relatively
healthy elderly adults, so the findings might not be applicable
to very old and frail people where vitamin D deficiency is
frequently present. Another aspect relates to gene x environ-
ment (GxE) interactions, which can be challenging to consider
in casual inference analyses. It has been postulated that vita-
min D levels may be subject to GxE interactions [46, 47].
However, these interactions remain difficult to detect (as test-
ing requires very large sample sizes which are not yet avail-
able). Until then, detecting the main effect of a genotype will
be more reliable than testing for GxE interactions [48]. Either
way, once GxE interactions are detected demonstrating that
the exposure differs quantitatively between individuals, then
the MR should be restricted to the specific subgroups where
the environmental exposure is homogeneous.

Limitations

In order to obtain unbiased estimates of causality, all three cru-
cial assumptions of MR must be fulfilled. However, the verifi-
cation of the assumptions is difficult, particularly assessing can-
alization and pleiotropic effects. In general, the results of MR
are said to be robust when multiple methods to assess the MR
assumptions are applied and the observed effects still stand.
Most importantly, the interpretation of MR studies should beT
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made with caution and with substantial knowledge of the un-
derlying biology. There are multiple factors that can bias the
estimates of MR studies: (1) Insufficient power—i.e., the prob-
ability that the null hypothesis can be rejected in the presence of
true association between the biomarker and disease. If the ge-
netic instrument explains a small proportion of the trait vari-
ance, a sufficiently powered sample size will be required to
detect effect and sample size calculations should be performed
and considered for the interpretation of the findings. (2) Weak
instrument bias—strong instruments will force the association
to be independent of confounders. With weak instruments, con-
founders are not equally balanced between genotype groups
and the confounders can explain a given difference in pheno-
type more strongly than the instruments. Therefore, the instru-
ment should be robustly associated with the exposure of inter-
est. Similarly, an instrument may lack sufficient power when
the outcome is only affected by large changes in the exposure.
This is particularly relevant for complex traits where common
genetic variants typically have a small effect. Therefore, the
combined use of multiple variants as instruments will be war-
ranted to achieve sufficient power. (3) Pleiotropy—i.e., when a
gene or variant is associated with multiple traits. Even in the
presence of a causal effect, the effect can still be due to other
factors controlled by the genetic effect. Pleiotropy can be verti-
cal (when genetic variants influence other factors downstream
of the primary trait) and horizontal (when the genetic variants
influence multiple traits separately). This is nicely illustrated in
recent work examining the influence of adiposity and BMD
[27••], where an effect on BMD can be mediated by fat mass,
lean mass, or both, drawing the need for careful interpretation
of the findings. (4) Population stratification—i.e., differences
in genetic structure between subpopulations masked in the pop-
ulation under investigation. The genetic association between
the instrument and the outcome should not be driven (or atten-
uated) by population stratification. Other potential ethnic differ-
ences between the discovery (exposure) and the target
(outcome) settings (i.e., allele frequencies, linkage disequilibri-
um structure) should be considered in the interpretation of the
MR findings as they reduce the strength of genetic instruments.
(5) Canalization/developmental compensation due to operation
of compensatory processes during development that may resist
the phenotypic changes that result from the genetic variants
being used as an instrument.

Clinical Implication

The major advantage of the MR approach is that it can help
overcome the expensive costs of running an RCT, by helping
in the prioritization of interventions directed towards causal
pathways. The selection of interventions based on genetic
evidence could have a substantial impact on clinical practice
with major considerable utility in primary prevention. In

cardiovascular epidemiology, for example, PCSK9 (protein
which influences LDL-C levels) has been identified as a po-
tential drug target using MR methods [49]. Recently, phase II
clinical trials have proven the safety and efficacy of the mono-
clonal PCSK9 antibodies [50]. Furthermore, the strengthening
of the causal relationship between modifiable exposures and a
wide range of outcomes related to complex diseases can help
us improve the drug target identification and validation pro-
cesses, i.e., the MR approach will contribute to robust deter-
mination of the role of factors within biological pathways. For
example, a recent study has illustrated how drug mechanisms
with genetic support are shown to succeed twice as often as
those without it (from phase I to approval) [51]. In fact, this is
the case for osteoporosis drugs as the highest degree of genetic
support for drug target indications was related to the muscu-
loskeletal (BMD), metabolic, and blood categories [52]. In
addition, MR can help in identifying adverse effects and drug
repurposing [53]. For example, it has been widely recognized
that statins, commonly used for prevention of CHD, increase
the risk of type 2 diabetes [54]. After the clinical trials, using
MR approach, it has been shown that the risk of type 2 diabe-
tes can be partially explained by inhibition of the HMGCR
gene (produces enzyme targeted by statins) [55]. In principle,
this example illustrates (in retrospective) the potential of the
MR approach to inform RCT before their execution.

Looking back to bone-related phenotypes, most MR
methods have evaluated the causality of specific exposures.
To date, there are no studies that have investigated the causal-
ity of specific drug targets for osteoporosis. One novel osteo-
porotic treatment is the use of Romosozumab, a monoclonal
antibody that targets sclerostin. However, recent trials have
shown that Romosozumab is associated with (small yet real)
increased risk of cardiovascular adverse events. This way, MR
studies are warranted to evaluate the causal relation of
Romosozumab treatment with this adverse effect, by investi-
gating whether variations in the SOST gene are associated
with cardiovascular or other adverse events.

Conclusions

The Mendelian randomization (MR) approach is a robust strat-
egy to determine causal relationships between risk factors and
diverse health-related outcomes, including bone health. While
still in its infancy, the MR approach has been used to evaluate
multiple factors mostly related to bonemineral density variation
and a few for fracture risk. Given the advent of large-scale
GWAS identifying hundreds to thousands of genetic variants
robustly associated with bone traits, together with the clear
benefits of the MR approach to prioritize interventions of
RCT, repurpose existing medications, and prediction of adverse
effects, it is expected that many of the unsolved epidemiological
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questions of observational studies will be solved and better
treatments for patients will emerge in the clinic.
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