24 research outputs found

    Preliminary results of the project A.I.D.A. (Auto Immunity: Diagnosis Assisted by computer)

    Get PDF
    In this paper, are presented the preliminary results of the A.I.D.A. (Auto Immunity: Diagnosis Assisted by computer) project which is developed in the frame of the cross-border cooperation Italy-Tunisia. According to the main objectives of this project, a database of interpreted Indirect ImmunoFluorescence (IIF) images on HEp 2 cells is being collected thanks to the contribution of Italian and Tunisian experts involved in routine diagnosis of autoimmune diseases. Through exchanging images and double reporting; a Gold Standard database, containing around 1000 double reported IIF images with different patterns including negative tests, has been settled. This Gold Standard database has been used for optimization of a computing solution (CADComputer Aided Detection) and for assessment of its added value in order to be used along with an immunologist as a second reader in detection of auto antibodies for autoimmune disease diagnosis. From the preliminary results obtained, the CAD appeared more powerful than junior immunologists used as second readers and may significantly improve their efficacy

    Macrophage Migration Inhibitory Factor Induces Autophagy via Reactive Oxygen Species Generation

    Get PDF
    Autophagy is an evolutionarily conserved catabolic process that maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actual role of MIF in autophagy remains unclear. Here, we have demonstrated that incubation of human hepatoma cell line HuH-7 cells with recombinant MIF (rMIF) induced reactive oxygen species (ROS) production and autophagy formation, including LC3-II expression, LC3 punctae formation, autophagic flux, and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC). In addition, serum starvation-induced MIF release and autophagy of HuH-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of HuH-7 cells. Taken together, these data suggest that cell autophagy was induced by MIF under stress conditions such as inflammation and starvation through ROS generation

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty

    Get PDF
    We forecasted potential impacts of climate change on the ability of a network of key sites for bird conservation (Important Bird Areas; IBAs) to provide suitable climate for 370 bird species of current conservation concern in two Asian biodiversity hotspots: the Eastern Himalaya and Lower Mekong. Comparable studies have largely not accounted for uncertainty, which may lead to inappropriate conclusions. We quantified the contribution of four sources of variation (choice of general circulation models, emission scenarios and species distribution modelling methods and variation in species distribution data) to uncertainty in forecasts and tested if our projections were robust to these uncertainties. Declines in the availability of suitable climate within the IBA network by 2100 were forecast as ‘extremely likely’ for 45% of species, whereas increases were projected for only 2%. Thus, we predict almost 24 times as many ‘losers’ as ‘winners’. However, for no species was suitable climate ‘extremely likely’ to be completely lost from the network. Considerable turnover (median = 43%, 95% CI = 35–69%) in species compositions of most IBAs were projected by 2100. Climatic conditions in 47% of IBAs were projected as ‘extremely likely’ to become suitable for fewer priority species. However, no IBA was forecast to become suitable for more species. Variation among General Circulation Models and Species Distribution Models contributed most to uncertainty among forecasts. This uncertainty precluded firm conclusions for 53% of species and IBAs because 95% confidence intervals included projections of no change. Considering this uncertainty, however, allows robust recommendations concerning the remaining species and IBAs. Overall, while the IBA network will continue to sustain bird conservation, climate change will modify which species each site will be suitable for. Thus, adaptive management of the network, including modified site conservation strategies and facilitating species' movement among sites, is critical to ensure effective future conservation

    The Networked Media Economy and the Indian Gilded Age

    No full text
    This chapter examines how the rapid growth of the networked media economy has become aligned with the broader development of digital platforms in India. Given debates over new forms of economic dependency arising from the power of digital platforms, the chapter critically explores a Braudelian model of global capitalism in the context of the specific state-capital relationships that have fostered an ‘Indian Gilded Age’. It analyses the development of Jio Platforms, India’s largest telecommunications firm and a subsidiary of Reliance Industries Limited (RIL), which is owned and controlled by the country’s wealthiest individual, Mukesh Ambani
    corecore