43 research outputs found
Measurement Bias in Caregiver-Report of Early Childhood Behavior Problems across Demographic Factors in an Echo-Wide Diverse Sample
BACKGROUND: Research and clinical practice rely heavily on caregiver-report measures, such as the Child Behavior Checklist 1.5-5 (CBCL/1.5-5), to gather information about early childhood behavior problems and to screen for child psychopathology. While studies have shown that demographic variables influence caregiver ratings of behavior problems, the extent to which the CBCL/1.5-5 functions equivalently at the item level across diverse samples is unknown.
METHODS: Item-level data of CBCL/1.5-5 from a large sample of young children (
RESULTS: Items with the most impactful DIF across child and caregiver groupings were identified for Internalizing, Externalizing, and total Problems. The robust item sets, excluding the high DIF items, showed good reliability and high correlation with the original Internalizing and total Problems scales, with lower reliability for Externalizing. Language version of CBCL administration, education level and sex of the caregiver respondent showed the most significant impact on MI, followed by child age. Sensitivity analyses revealed that child race has a unique impact on DIF over and above socioeconomic status.
CONCLUSIONS: The CBCL/1.5-5, a caregiver-report measure of early childhood behavior problems, showed bias across demographic groups. Robust item sets with less DIF can measure Internalizing and total Problems equally as well as the full item sets, with slightly lower reliability for Externalizing, and can be crosswalked to the metric of the full item set, enabling calculation of normed T scores based on more robust item sets
Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants
Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression
Vitiligo is an autoimmune disease in which melanocyte destruction causes skin depigmentation, with 49 loci known from previous GWAS. Aiming to define vitiligo subtypes, we discovered that age-of-onset is bimodal; one-third of cases have early onset (mean 10.3 years) and two-thirds later onset (mean 34.0 years). In the early-onset subgroup we found novel association with MHC class II region indel rs145954018, and independent association with the principal MHC class II locus from previous GWAS, represented by rs9271597; greatest association was with rs145954018del-rs9271597A haplotype (P = 2.40 × 10−86, OR = 8.10). Both rs145954018 and rs9271597 are located within lymphoid-specific enhancers, and the rs145954018del-rs9271597A haplotype is specifically associated with increased expression of HLA-DQB1 mRNA and HLA-DQ protein by monocytes and dendritic cells. Thus, for vitiligo, MHC regulatory variation confers extreme risk, more important than HLA coding variation. MHC regulatory variation may represent a significant component of genetic risk for other autoimmune diseases
Recommended from our members
Human Facial Shape and Size Heritability and Genetic Correlations
The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development
Human Facial Shape and Size Heritability and Genetic Correlations
The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development
Genomewide Association Study of African Children Identifies Association of <i>SCHIP1</i> and <i>PDE8A</i> with Facial Size and Shape
<div><p>The human face is a complex assemblage of highly variable yet clearly heritable anatomic structures that together make each of us unique, distinguishable, and recognizable. Relatively little is known about the genetic underpinnings of normal human facial variation. To address this, we carried out a large genomewide association study and two independent replication studies of Bantu African children and adolescents from Mwanza, Tanzania, a region that is both genetically and environmentally relatively homogeneous. We tested for genetic association of facial shape and size phenotypes derived from 3D imaging and automated landmarking of standard facial morphometric points. SNPs within genes <i>SCHIP1</i> and <i>PDE8A</i> were associated with measures of facial size in both the GWAS and replication cohorts and passed a stringent genomewide significance threshold adjusted for multiple testing of 34 correlated traits. For both <i>SCHIP1</i> and <i>PDE8A</i>, we demonstrated clear expression in the developing mouse face by both whole-mount <i>in situ</i> hybridization and RNA-seq, supporting their involvement in facial morphogenesis. Ten additional loci demonstrated suggestive association with various measures of facial shape. Our findings, which differ from those in previous studies of European-derived whites, augment understanding of the genetic basis of normal facial development, and provide insights relevant to both human disease and forensics.</p></div
Recommended from our members
Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Childhood Autism-related Outcomes
BackgroundEpidemiologic evidence linking prenatal exposure to per- and polyfluoroalkyl substances (PFAS) with altered neurodevelopment is inconclusive, and few large studies have focused on autism-related outcomes. We investigated whether blood concentrations of PFAS in pregnancy are associated with child autism-related outcomes.MethodsWe included 10 cohorts from the National Institutes of Health (NIH)-funded Environmental influences on Child Health Outcomes (ECHO) program (n = 1,429). We measured 14 PFAS analytes in maternal blood collected during pregnancy; eight analytes met detection criteria for analysis. We assessed quantitative autism-related traits in children via parent report on the Social Responsiveness Scale (SRS). In multivariable linear models, we examined relationships of each PFAS (natural log-transformed) with SRS scores. We further modeled PFAS as a complex mixture using Bayesian methods and examined modification of these relationships by child sex.ResultsMost PFAS in maternal blood were not associated with child SRS T-scores. Perfluorononanoic acid (PFNA) showed the strongest and most consistent association: each 1-unit increase in ln-transformed PFNA was associated with greater autism-related traits (adjusted β [95% confidence interval (CI)] = 1.5 [-0.1, 3.0]). The summed mixture, which included six PFAS detected in >70% of participants, was not associated with SRS T-scores (adjusted β [95% highest posterior density interval] = 0.7 [-1.4, 3.0]). We did not observe consistent evidence of sex differences.ConclusionsPrenatal blood concentrations of PFNA may be associated with modest increases in child autism-related traits. Future work should continue to examine the relationship between exposures to both legacy and emerging PFAS and additional dimensional, quantitative measures of childhood autism-related outcomes