12 research outputs found
Anti-staphylococcal activity and mode of action of thioridazine photoproducts
Antibiotic resistance became an increasing risk for population health threatening our ability to fight infectious diseases. The objective of this study was to evaluate the activity of laser irradiated thioridazine (TZ) against clinically-relevant bacteria in view to fight antibiotic resistance. TZ in ultrapure water solutions was irradiated (1–240 min) with 266 nm pulsed laser radiation. Irradiated solutions were characterized by UV–Vis and FTIR absorption spectroscopy, thin layer chromatography, laser-induced fluorescence, and dynamic surface tension measurements. Molecular docking studies were made to evaluate the molecular mechanisms of photoproducts action against Staphylococcus aureus and MRSA. More general, solutions were evaluated for their antimicrobial and efflux inhibitory activity against a panel of bacteria of clinical relevance. We observed an enhanced antimicrobial activity of TZ photoproducts against Gram-positive bacteria. This was higher than ciprofloxacin effects for methicillin- and ciprofloxacin-resistant Staphylococcus aureus. Molecular docking showed the Penicillin-binding proteins PBP3 and PBP2a inhibition by sulforidazine as a possible mechanism of action against Staphylococcus aureus and MRSA strains, respectively. Irradiated TZ reveals possible advantages in the treatment of infectious diseases produced by antibiotic-resistant Gram-positive bacteria. TZ repurposing and its photoproducts, obtained by laser irradiation, show accelerated and low-costs of development if compared to chemical synthesis.publishersversionpublishe
Toxicity study in blood and tumor cells of laser produced medicines for application in fabrics
Phenothiazine derivatives are non-antibiotics with antimicrobial, fungistatic and fungicidal effects. We exposed to a high energy UV laser beam phenothiazines solutions in water at 20mg/mL concentration to increase antibacterial activity of resulting mixtures. Compared to previous results obtained on bacteria, more research is needed about UV laser irradiated phenothiazines applications on cancer cell cultures to evidence possible anticancerous properties. Evaluation of the safety of the newly obtained photoproducts in view of use on humans is also needed. Due to expensive animal testing in toxicology and pressure from general public and governments to develop alternatives to in vivo testing, in vitro cell-based models are attractive for preliminary testing of new materials. Cytotoxicity screening reported here shows that laser irradiated (4h exposure time length) chlorpromazine and promazine are more efficient against some cell cultures. Interaction of laser irradiated phenothiazines with fabrics show that promethazine and chlorpromazine have improved wetting properties. Correlation of these two groups of properties shows that chlorpromazine appears to be more recommended for applications on tissues using fabrics as transport vectors. The reported results concern stability study of phenothiazines water solutions to know the time limits within which they are stable and may be used. Keywords: Culture cells; Fabrics; Hemolysis; In vitro cytotoxicity; Laser; Phenothiazines
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts. June 4-7, 2019, Szczyrk, Polan
Optical Characterization of Ciprofloxacin Photolytic Degradation by UV-Pulsed Laser Radiation
Ciprofloxacin is one of the most prescribed antibiotics in treating bacterial infections, becoming an important pollutant of the wastewaters. Moreover, ciprofloxacin is hard to be destroyed by conventional water treatment processes; therefore, efficient treatments to destroy it are needed in water decontamination. This study offers insights into the performance of 266 nm laser beams on the photodegradation of ciprofloxacin. An Nd:YAG laser was used that emitted 266 nm at an energy of 6.5 mJ (power of 65 mW) and ciprofloxacin water solutions were irradiated up to 240 min. The irradiated solutions were investigated by UV-Vis and FTIR absorption spectroscopy, pH assay, and laser-induced fluorescence. An HPTLC densitometer was used to characterize the laser-induced fluorescence and fluorescence lifetime of photodegradation products. The UV-Vis absorption, FTIR, and laser-induced fluorescence spectra showed the degradation of ciprofloxacin. Moreover, HPTLC densitometry offered the fluorescence and fluorescence lifetime of ciprofloxacin and its three photoproducts as well as their relative quantification. From the FTIR spectra, the molecular structure of two out of three photoproducts was proposed. In conclusion, the laser irradiation method provided the efficient photodegradation of ciprofloxacin, whereas the analytical techniques offered the proper means to monitor the process and detect the obtained photoproducts
Detection of epidermoid squamous-cell carcinoma by laser induced autofluorescence – preliminary results
Epidermoid squamous-cell carcinoma is by far the most common malignant tumor of larynx
(95-96%), representing 1.6-2% of cancers in men and 0.2-0.4% of malignancies in females, with a
world growing incidence and a slight dominance in urban areas. By exposing cells and tissues to UV
light, the excitation of naturally occurring chromophores occurs in part by non-radiative
deactivations, in part via fluorescence emission. Using laser induced autofluorescence (LIAF) in natural
tissues not impregnated with photosensitizers as a noninvasive autofluorescence technique for both
diagnosis and intraoperative assessments of laryngeal cancer we can improve the tumor malign
identification in vivo. A total of three laryngeal biopsies (i.e. three pairs of tissues, each pair
containing a healthy and a tumor tissue sample extracted from the same patient) were considered in
this study. The samples were collected from patients previously diagnosed with stage T3 laryngeal
carcinoma. Immediately after the surgery fragments of normal tissue and neoplastic tissue were
collected, fragments of which later, after freezing, were sectioned in 25-30 μm thickness slices and
stretched to quartz slides. All samples were subjected to controlled laser irradiation using a pulsed
diode laser (λ=375nm, pulse width=87ps, frequency 31MHz) and the autofluorescence and its lifetime
were collected using two optical fibers (inner diameter 400µm and 1500µm, respectively) positioned
in a 45o
geometry. The signals were recorded using a spectrograph and a photo-sensor module, the
output of which was fed to a digital oscilloscope.
We assessed the impact of laser induced autofluorescence and autofluorescence lifetime
measurements in order to identify the differences between healthy and tumoral laryngeal tissue and
outlining them, in terms of differences between the laser autoinduced fluorescence averaged
intensity. The results determined the usefulness of laser induced spectroscopy in the diagnosis of
laryngeal squamous cell carcinoma, discriminating between the malignant and normal tissue by
analyzing the differences in spectral autofluorescence intensity and autofluorescence lifetime.
Acknowledgements: This work has been financed by the National Authority for Research and
Innovation in the frame of Nucleus programme - contract 4N/2016 and the project number PN-II-IDPCE-2011-3-0922.
The authors thank Prof. M. L. Pascu for permanent support in performing this
research
Spectroscopic Investigations of Porphyrin-TiO2 Nanoparticles Complexes
This study presents the spectral characterization of TiO2 nanoparticles (NPs) functionalized with three porphyrin derivatives: 5,10,15,20-(Tetra-4-aminophenyl) porphyrin (TAPP), 5,10,15,20-(Tetra-4-methoxyphenyl) porphyrin (TMPP), and 5,10,15,20-(Tetra-4-carboxyphenyl) porphyrin (TCPP). UV-Vis absorption and Fourier transform infrared spectroscopy–attenuated total reflection (FTIR-ATR) spectroscopic studies of these porphyrins and their complexes with TiO2 NPs were performed. In addition, the efficiency of singlet oxygen generation, the key species in photodynamic therapy, was investigated. UV-Vis absorption spectra of the NPs complexes showed the characteristic bands of porphyrins. These allowed us to determine the loaded porphyrins on TiO2 NPs functionalized with porphyrins. FTIR-ATR revealed the formation of porphyrin-TiO2 complexes, suggesting that porphyrin adsorption on TiO2 may involve the pyrroles in the porphyrin ring, or the radicals of the porphyrin derivative. The quantum yield for singlet oxygen generation by the studied porphyrin complexes with TiO2 was higher compared to bare porphyrins for TAPP and TMPP, while for the TCPP-TiO2 NPs complex, a decrease was observed, but still maintained a good efficiency. The TiO2 NPs conjugates can be promising candidates to be tested in photodynamic therapy in vitro assays
Nitrites Detection with Sensors Processed via Matrix-Assisted Pulsed Laser Evaporation
This work is focused on the application of a laser-based technique, i.e., matrix-assisted pulsed laser evaporation (MAPLE) for the development of electrochemical sensors aimed at the detection of nitrites in water. Commercial carbon-based screen-printed electrodes were modified by MAPLE via the application of a newly developed composite coating with different concentrations of carbon nanotubes (CNTs), chitosan, and iron (II) phthalocyanine (C32H16FeN8). The performance of the newly fabricated composite coatings was evaluated both by investigating the morphology and surface chemistry of the coating, and by determining the electro-catalytic oxidation properties of nitrite with bare and modified commercial carbon-based screen-printed electrode. It was found that the combined effect of CNTs with chitosan and C32H16FeN8 significantly improves the electrochemical response towards the oxidation of nitrite. In addition, the MAPLE modified screen-printed electrodes have a limit of detection of 0.12 µM, which make them extremely useful for the detection of nitrite traces
Stability Studies of UV Laser Irradiated Promethazine and Thioridazine after Exposure to Hypergravity Conditions
Pharmaceuticals carried into space are subjected to different gravitational conditions. Hypergravity is encountered in the first stage, during spacecraft launching. The stability of medicines represents a critical element of space missions, especially long-duration ones. Therefore, stability studies should be envisaged before the implementation of drugs for future deep space travel, where the available pharmaceuticals would be limited and restocking from Earth would be impossible. Multipurpose drugs should be proposed for this reason, such as phenothiazine derivatives that can be transformed by optical methods into antimicrobial agents. Within this preliminary study, promethazine and thioridazine aqueous solutions were exposed to UV laser radiation that modified their structures and generated a mixture of photoproducts efficient against particular bacteria. Sub-sequently, they were subjected to 20 g in the European Space Agency’s Large Diameter Centrifuge. The aim was to evaluate the impact of hypergravity on the physico-chemical and spectral properties of unirradiated and laser-irradiated medicine solutions through pH assay, UV-Vis/FTIR absorption spectroscopy, and thin-layer chromatography. The results revealed no substantial alterations in centrifuged samples when compared to uncentrifuged ones. Due to their stability after high-g episodes, laser-exposed phenothiazines could be considered for future space missions
Photosensitized cleavage of some olefins as potential linkers to be used in drug delivery
International audienc