12,963 research outputs found

    Excitation of g modes in Wolf-Rayet stars by a deep opacity bump

    Full text link
    We examine the stability of l=1 and l=2 g modes in a pair of nitrogen-rich Wolf-Rayet stellar models characterized by differing hydrogen abundances. We find that modes with intermediate radial orders are destabilized by a kappa mechanism operating on an opacity bump at an envelope temperature log T ~ 6.25. This `deep opacity bump' is due primarily to L-shell bound-free transitions of iron. Periods of the unstable modes span ~ 11-21 hr in the model containing some hydrogen, and ~ 3-12 hr in the hydrogen-depleted model. Based on the latter finding, we suggest that self-excited g modes may be the source of the 9.8 hr-periodic variation of WR 123 recently reported by Lefevre et al. (2005).Comment: 5 pages, 3 figures, accepted by MNRAS letter

    The influence of convective activity on the vorticity budget

    Get PDF
    The influence of convective activity on the vorticity budget was determined during the AVE VII and AVE-SESAME I periods. This was accomplished by evaluating each term in the expanded vorticity equation with twisting and tilting and friction representing the residual of all other terms. Convective areas were delineated by use of radar summary charts. The influence of convective activity was established by analyzing contoured fields of each term as well as numerical values and profiles of the various terms in convective and nonconvective areas. Vertical motion was computed by the kinematic method, and all computations were performed over the central United States using a grid spacing of 158 km. The results show that, in convective areas in particular, the residual is of comparable magnitude to the horizontal advection and divergence terms, and therefore, cannot be neglected. In convective areas, the residual term represents a sink of vorticity below 500 mb and a strong source near 300 mb. In nonconvective areas, the residual was small in magnitude at all levels, but tended to be negative (vorticity sink) at 300 mb. The local change term, over convective areas, tended to be balanced by the residual term, and appeared to be a good indicator of development (vorticity becoming more cyclonic). Finally, the shape of the vertical profiles of the term in the budget equation agreed with those found by other investigators for easterly waves, but the terms were one order of magnitude larger than those for easterly waves

    Comparison of predicted and measured elastohydrodynamic film thickness in a 20-millimeter-bore ball bearing

    Get PDF
    Elastohydrodynamic film thicknesses were measured for a 20-mm bore ball bearing using the capacitance technique. The bearing was thrust loaded to 90, 445, and 778 N (20, 100, and 175 lb). The corresponding maximum contact stress on the inner race was 1.28, 2.09, and 2.45 GPa (185 000, 303,000, and 356, 000 psi). Test speeds ranged from 400 to 15,000 rpm. Measurements were taken with four different lubricants: (1) synthetic paraffinic; (2) synthetic paraffinic with additives; (3) synthetic type II aircraft oil; and (4) synthetic cycloaliphatic hydrocarbon traction fluid. The test bearing was mist lubricated. Test temperatures were 27, 65, and 121 C (80, 150, and 250 F). The measured results for the various test parameters were compared to theoretical predictions from computer programs. Also the data were plotted on dimensionless coordinates and compared to several classical isothermal theories

    Flutter suppression by active control and its benefits

    Get PDF
    A general discussion of the airplane applications of active flutter suppression systems is presented with focus on supersonic cruise aircraft configurations. Topics addressed include a brief historical review; benefits, risks, and concerns; methods of application; and applicable configurations. Results are presented where the direct operating costs and performance benefits of an arrow wing supersonic cruise vehicle equipped with an active flutter suppression system are compared with corresponding costs and performance of the same baseline airplane where the flutter deficiency was corrected by passive methods (increases in structural stiffness). The design, synthesis, and conceptual mechanization of the active flutter suppression system are discussed. The results show that a substantial weight savings can be accomplished by using the active system. For the same payload and range, airplane direct operating costs are reduced by using the active system. The results also indicate that the weight savings translates into increased range or payload

    OH-58 helicopter transmission failure analysis

    Get PDF
    The OH-58 main transmission gearbox was run at varying output torques, speeds, and oil cooling rates. The gearbox was subsequently run to destruction by draining the oil from the gearbox while operating at a speed of 6200 revs per minute and 36,000 inch-pounds output torque. Primary cause of gearbox failure was overheating and melting of the planet bearing aluminum cages. Complete failure of the gearbox occurred in 28 1/2 minutes after the oil pressure dropped to zero. The alternating and maximum stresses in the gearbox top case were approximately 10 percent of the endurance limit for the material. Deflection of the bevel gear at 67000 inch-pounds output torque indicate a marginal stiffness for the bevel gear supporting system

    Evaluation of CBS 600 carburized steel as a gear material

    Get PDF
    Gear endurance tests were conducted with one lot of consumable-electrode vacuum-melted (CVM) AISI 9310 gears and one lot of air-melt CBS 600 gears. The gears were 8 pitch with a pitch diameter of 8.89 centimeters (3.5 in.). Bench-type rolling-element fatigue tests were also conducted with one lot of CVM AISI 9310, three lots of CVM CBS 600, and one of air-melt CBS 600 material. The rolling-element bars were 0.952 centimeter (0.375 in.) in diameter. The CBS 600 material exhibited pitting fatigue lives in both rolling-element specimens and gears at least equivalent to that of CVM AISI 9310. Tooth fracture failure occurred with the CBS 600 gears after overrunning a fatigue spall, but it did not occur with the CVM AISI 9310 gears. Tooth fracture in the CBS 600 was attributed to excessive carbon content in the case, excessive case depth, and a higher than normal core hardness

    Centrifugal Breakout of Magnetically Confined Line-Driven Stellar Winds

    Full text link
    We present 2D MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the star's rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value), and also a large magnetic confinement parameter, η∗≡B∗2R∗2/M˙V∞=600\eta_{\ast} \equiv B_{\ast}^2 R_{\ast}^{2} / \dot{M} V_{\infty} = 600. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outwards. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back on to the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outwards, leading to episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly 10810^{8}K, high enough to emit hard (several keV) X-rays. Such \emph{centrifugal mass ejection} represents a novel mechanism for driving magnetic reconnection, and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like σ\sigma Ori E.Comment: 5 pages, 3 figures, accepted by ApJ
    • …
    corecore