30 research outputs found

    Increased TLR4 Expression and Downstream Cytokine Production in Immunosuppressed Adults Compared to Non-Immunosuppressed Adults

    Get PDF
    An increasing number of patients have medical conditions with altered host immunity or that require immunosuppressive medications. While immunosuppression is associated with increased risk of infection, the precise effect of immunosuppression on innate immunity is not well understood. We studied monocyte Toll-like receptor (TLR) expression and cytokine production in 137 patients with autoimmune diseases who were maintained on immunosuppressive medications and 419 non-immunosuppressed individuals.Human peripheral blood monocytes were assessed for surface expression of TLRs 1, 2, and 4. After incubation with TLR agonists, in vitro production of the cytokines IL-8, TNFalpha, and MIF were measured by ELISA as a measure of TLR signaling efficiency and downstream effector responsiveness. Immunosuppressed patients had significantly higher TLR4 surface expression when compared to non-immunosuppressed adults (TLR4 %-positive 70.12+/-2.28 vs. 61.72+/-2.05, p = 0.0008). IL-8 and TNF-alpha baseline levels did not differ, but were significantly higher in the autoimmune disease group following TLR stimulation. By contrast, baseline MIF levels were elevated in monocytes from immunosuppressed individuals. By multivariable analyses, IL-8 and TNFalpha, but not MIF levels, were associated with the diagnosis of an underlying autoimmune disease. However, only MIF levels were significantly associated with the use of immunosuppressive medications.Our results reveal that an enhanced innate immune response is a feature of patients with autoimmune diseases treated with immunosuppressive agents. The increased risk for infection evident in this patient group may reflect a dysregulation rather than a simple suppression of innate immunity

    What is known about melatonin, chemotherapy and altered gene expression in breast cancer

    Get PDF
    Melatonin, synthesized in and released from the pineal gland, has been demonstrated by multiple in vivo and in vitro studies to have an oncostatic role in hormone?dependent tumors. Furthermore, several clinical trials point to melatonin as a promising adjuvant molecule to be considered for cancer treatment. In the past few years, evidence of a broader spectrum of action of melatonin as an antitumor agent has arisen; thus, melatonin appears to also have therapeutic effects in several types of hormone?independent cancer, including ovarian, leukemic, pancreatic, gastric and non?small cell lung carcinoma. In the present study, the latest findings regarding melatonin molecular actions when concomitantly administered with either radiotherapy or chemotherapy in cancer were reviewed, with a particular focus on hormone?dependent breast cancer. Finally, the present study discusses which direction should be followed in the next years to definitely clarify whether or not melatonin administration could protect against non?desirable effects (such as altered gene expression and post?translational protein modifications) caused by chemotherapy or radiotherapy treatments. As treatments move towards personalized medicine, comparative gene expression profiling with and without melatonin may be a powerful tool to better understand the antitumor effects of melatonin, the pineal gland hormone

    CREB1/ATF1 Activation in Photoreceptor Degeneration and Protection

    No full text
    The CREB1/ATF1 pathway is activated in canine and human rods and cones undergoing degeneration. The pathway is also activated by exposure to the neuroprotective agent CNTF. These data suggest that CREB1/ATF1 contributes to an innate protective response and is of potential therapeutic value in the treatment of RP and AMD

    The Effects of Comorbidity on the Benefits and Harms of Treatment for Chronic Disease: A Systematic Review

    No full text
    <div><p>Background</p><p>There are concerns about the potential for unintentional harms when clinical practice guidelines are applied to patients with multimorbidity. The objective was to summarize the evidence regarding the effect(s) of comorbidity on the outcomes of medication for an index chronic condition.</p><p>Methods</p><p>A systematic review was conducted of studies published in MEDLINE and Cochrane Trials before May 2012. The search strategy was constructed to identify articles indexed with “comorbidity” or a related term or by a given condition and one or more additional specified comorbid conditions. The search yielded 3252 articles, of which 37 passed the title/abstract screening process, and 22 were included after full-text review. An additional 23 articles were identified by screening the reference lists for included articles. Information was extracted on study design; population; therapy; comparison groups; outcome(s); main findings.</p><p>Findings</p><p>Indexing of articles was inconsistent, with no term for “multimorbidity,” and rare use of “comorbidity”. Only one article examined the effects of comorbidity <i>per se,</i> finding no benefit of tight control of DM among persons with high comorbidity, defined using a comorbidity index. The remainder examined pairs of conditions, the majority of which were post-hoc analyses of randomized controlled trials and which found no difference in outcomes according to whether a comorbid condition was present. Several demonstrated no difference or an increased risk of adverse outcome among persons with DM and tight control of HTN as compared to usual control. Several demonstrated lack of benefit of statins among persons with end-stage renal disease.</p><p>Conclusions</p><p>There is limited evidence regarding the effects of multiple comorbidities on treatment outcomes. The majority of studies demonstrated no effect of a single comorbid condition on outcomes. Additional studies examining a broad range of comorbidity are required, along with clear and consistent indexing to allow for improved synthesis of the evidence.</p></div
    corecore