71 research outputs found

    From/To: John G. Tower (Chalk\u27s reply filed first)

    Get PDF

    Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2

    Get PDF
    Abstract Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection. Author Summary Alphaviruses occur worldwide, causing significant diseases such as encephalitis or arthritis in humans and animals. In addition, some alphaviruses, such as VEEV, pose a biothreat due to their high infectivity and lack of available treatments. To discover small molecule inhibitors with lead development potential, we used a cell-based assay to screen 348,140 compounds for inhibition of a VEEV-induced cytopathic effect. The screen revealed a scaffold with high inhibitory VEEV cellular potency and low cytotoxicity liability. While most previously reported anti-alphavirus compounds inhibit host proteins, evidence supported that this scaffold targeted the VEEV nsP2 protein, and that inhibition was associated with viral replication. Interestingly, compound resistance studies with VEEV mapped activity to the N-terminal domain of nsP2, to which no known function has been attributed. Ultimately, this discovery has delivered a small molecule-derived class of potent VEEV inhibitors whose activity is coupled to the nsP2 viral protein, a novel target with a previously unestablished biological role that is now implicated in viral replication.This research was supported by the following funding sources: NIH R03MH087448-01A1, University of Louisville Internal Research Initiate grant to DHC, USAMRAA W81XWH-10-2-0064 and W81XWH-08-2-0024 to CBJ. Screening was provided by the Southern Research Specialized Screening Center (U54HG005034-0) and chemistry through the University of Kansas Specialized Chemistry Center (U54HG005031). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Association between promoter -1607 polymorphism of MMP1 and Lumbar Disc Disease in Southern Chinese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are involved in the degradation of the extracellular matrix of the intervertebral disc. A SNP for guanine insertion/deletion (G/D), the -1607 promoter polymorphism, of the <it>MMP1 </it>gene was found significantly affecting promoter activity and corresponding transcription level. Hence it is a good candidate for genetic studies in DDD.</p> <p>Methods</p> <p>Southern Chinese volunteers between 18 and 55 years were recruited from the population. DDD in the lumbar spine was defined by MRI using Schneiderman's classification. Genomic DNA was isolated from the leukocytes and genotyping was performed using the Sequenom<sup>® </sup>platform. Association and Hardy-Weinberg equilibrium checking were assessed by Chi-square test and Mann-Whitney U test.</p> <p>Results</p> <p>Our results showed substantial evidence of association between -1607 promoter polymorphism of <it>MMP1 </it>and DDD in the Southern Chinese subjects. D allelic was significantly associated with DDD (p value = 0.027, odds ratio = 1.41 with 95% CI = 1.04–1.90) while Genotypic association on the presence of D allele was also significantly associated with DDD (p value = 0.046, odds ratio = 1.50 with 95% CI = 1.01–2.24). Further age stratification showed significant genotypic as well as allelic association in the group of over 40 years (genotypic: p value = 0.035, odds ratio = 1.617 with 95% CI = 1.033–2.529; allelic: p value = 0.033, odds ratio = 1.445 with 95% CI = 1.029–2.029). Disc bulge, annular tears and the Schmorl's nodes were not associated with the D allele.</p> <p>Conclusion</p> <p>We demonstrated that individuals with the presence of D allele for the -1607 promoter polymorphism of <it>MMP1 </it>are about 1.5 times more susceptible to develop DDD when compared with those having G allele only. Further association was identified in individuals over 40 years of age. Disc bulge, annular tear as well as Schmorl's nodes were not associated with this polymorphism.</p

    Parental and infant characteristics and childhood leukemia in Minnesota

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leukemia is the most common childhood cancer. With the exception of Down syndrome, prenatal radiation exposure, and higher birth weight, particularly for acute lymphoid leukemia (ALL), few risk factors have been firmly established. Translocations present in neonatal blood spots and the young age peak of diagnosis suggest that early-life factors are involved in childhood leukemia etiology.</p> <p>Methods</p> <p>We investigated the association between birth characteristics and childhood leukemia through linkage of the Minnesota birth and cancer registries using a case-cohort study design. Cases included 560 children with ALL and 87 with acute myeloid leukemia (AML) diagnoses from 28 days to 14 years. The comparison group was comprised of 8,750 individuals selected through random sampling of the birth cohort from 1976–2004. Cox proportional hazards regression specific for case-cohort studies was used to compute hazard ratios (HR) and 95% confidence intervals (CIs).</p> <p>Results</p> <p>Male sex (HR = 1.41, 95% CI 1.16–1.70), white race (HR = 2.32, 95% CI 1.13–4.76), and maternal birth interval ≥ 3 years (HR = 1.31, 95% CI 1.01–1.70) increased ALL risk, while maternal age increased AML risk (HR = 1.21/5 year age increase, 95% CI 1.0–1.47). Higher birth weights (>3798 grams) (HRALL = 1.46, 1.08–1.98; HRAML = 1.97, 95% CI 1.07–3.65), and one minute Apgar scores ≤ 7 (HRALL = 1.30, 95% CI 1.05–1.61; HRAML = 1.62, 95% CI 1.01–2.60) increased risk for both types of leukemia. Sex was not a significant modifier of the association between ALL and other covariates, with the exception of maternal education.</p> <p>Conclusion</p> <p>We confirmed known risk factors for ALL: male sex, high birth weight, and white race. We have also provided data that supports an increased risk for AML following higher birth weights, and demonstrated an association with low Apgar scores.</p

    Personal Papers (MS 80-0002)

    No full text
    Letter, using Western Union, from John G. Tower to Harris Kempner discussing information about renewing their efforts concerning a strike to the administration of the U. S. Senate
    corecore