279 research outputs found
Anode-Coupled Readout for Light Collection in Liquid Argon TPCs
This paper will discuss a new method of signal read-out from photon detectors
in ultra-large, underground liquid argon time projection chambers. In this
design, the signal from the light collection system is coupled via capacitive
plates to the TPC wire-planes. This signal is then read out using the same
cabling and electronics as the charge information. This greatly benefits light
collection: it eliminates the need for an independent readout, substantially
reducing cost; It reduces the number of cables in the vapor region of the TPC
that can produce impurities; And it cuts down on the number of feed-throughs in
the cryostat wall that can cause heat-leaks and potential points of failure. We
present experimental results that demonstrate the sensitivity of a LArTPC wire
plane to photon detector signals. We also simulate the effect of a 1 s
shaping time and a 2 MHz sampling rate on these signals in the presence of
noise, and find that a single photoelectron timing resolution of 30 ns
can be achieved.Comment: 16 pages, 15 figure
The Structure of Citizen Bystander Offering Behaviors Immediately After the Boston Marathon Bombing
In April of 2013, two pressure cooker bombs detonated near the finish line of the Boston Marathon. The resulting crowdsourced criminal investigation has been subject to intense scrutiny. What has not been discussed are the offering behaviors of Twitter users immediately following the detonations. The hashtag #BostonHelp offers a case study of what emergent, computer-mediated groups offer victims of a crisis event. Through creative appropriation of at-hand technologies (CAAT), this emergent group organized online offering and information about tangible resources on the ground. In this case, #BostonHelp participants harnessed blogs, social media, Google Forms, and pre-existing services to organize help for those in need. The resulting structure stabilized and became a symbol of the response itself. This case study offers an analysis of the structure created by computer-mediated crowds. We conclude with a discussion of trying to design, or even detect these behaviors at the start of a crisis response
Improved TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems
Scintillation light produced in liquid argon (LAr) must be shifted from 128
nm to visible wavelengths in light detection systems used for liquid argon
time-projection chambers (LArTPCs). To date, LArTPC light collection systems
have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes
(PMTs) or plates placed in front of the PMTs. Recently, a new approach using
TPB-coated light guides was proposed. In this paper, we report on light guides
with improved attenuation lengths above 100 cm when measured in air. This is an
important step in the development of meter-scale light guides for future
LArTPCs. Improvements come from using a new acrylic-based coating,
diamond-polished cast UV transmitting acrylic bars, and a hand-dipping
technique to coat the bars. We discuss a model for connecting bar response in
air to response in liquid argon and compare this to data taken in liquid argon.
The good agreement between the prediction of the model and the measured
response in liquid argon demonstrates that characterization in air is
sufficient for quality control of bar production. This model can be used in
simulations of light guides for future experiments.Comment: 25 pages, 20 figure
The photomultiplier tube calibration system of the MicroBooNE experiment
We report on the design and construction of a LED-based fiber calibration system for large liquid argon time projection detectors. This system was developed to calibrate the optical systems of the MicroBooNE experiment. As well as detailing the materials and installation procedure, we provide technical drawings and specifications so that the system may be easily replicated in future LArTPC detectors.National Science Foundation (U.S.) (Grant PHY-1205175
Distributed Creativity in Play
International audienceOur objective is to explore distributed forms of creativity that arise in play to help guide and foster supportive research, game design, and technology. This workshop seeks to bring together researchers, game designers, and others to examine theories of creativity and play, game design practices, methods for studying creativity in play, and creative play experiences. Participants will present work, video prototype, discuss topics, and contribute to outcomes
Can we identify non-stationary dynamics of trial-to-trial variability?"
Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
- …