98 research outputs found

    The lure of sirens: joint distance and velocity measurements with third generation detectors

    Get PDF
    The next generation of detectors will detect gravitational waves from binary neutron stars at cosmological distances, for which around a thousand electromagnetic follow-ups may be observed per year. So far, most work devoted to the expected cosmological impact of these standard sirens employed them only as distance indicators. Only recently their use as tracers of clustering, similar to what already proposed for supernovae, has been studied. Focusing on the expected specifications of the Einstein Telescope (ET), we forecast here the performance on cosmological parameters of future standard sirens as both distance and density indicators, with emphasis on the linear perturbation growth index and on spatial curvature. We improve upon previous studies in a number of ways: a more detailed analysis of available telescope time, the inclusion of more cosmological and nuisance parameters, the Alcock-Paczynski correction, the use of sirens also as both velocity and density tracers, and a more accurate estimation of the distance posterior. We find that the analysis of the clustering of sirens improves the constraints on H0H_0 by 30% and on Ωk0\Omega_{k0} by over an order of magnitude, with respect to their use merely as distance indicators. With 5 years of joint ET and Rubin Observatory follow-ups we could reach precision of 0.1 km/s/Mpc in H0H_0 and 0.02 in Ωk0\Omega_{k0} using only data in the range 0<z<0.50<z<0.5. We also find that the use of sirens as tracers of density, and not only velocity, yields good improvements on the growth of structure constraints

    Evolution of alternative reproductive systems in Bacillus stick insects.

    Get PDF
    Reproduction is a key feature of all organisms, yet the way in which it is achieved varies greatly across the tree of life. One striking example of this variation is the stick insect genus Bacillus, in which five different reproductive modes have been described: sex, facultative and obligate parthenogenesis, and two highly unusual reproductive modes: hybridogenesis and androgenesis. Under hybridogenesis, the entire genome from the paternal species is eliminated and replaced each generation by mating with the corresponding species. Under androgenesis, an egg is fertilized, but the developing diploid offspring bear two paternal genomes and no maternal genome, as a consequence of unknown mechanisms. Here, we reevaluate the previous descriptions of Bacillus lineages and the proposed F1 hybrid ancestries of the hybridogenetic and obligately parthenogenetic lineages (based on allozymes and karyotypes) from Sicily, where all these reproductive modes are found. We generate a chromosome-level genome assembly for a facultative parthenogenetic species (B. rossius) and combine extensive field sampling with RADseq and mtDNA data. We identify and genetically corroborate all previously described species and confirm the ancestry of hybrid lineages. All hybrid lineages have fully retained their F1 hybrid constitution throughout the genome, indicating that the elimination of the paternal genome in hybridogens is always complete and that obligate parthenogenesis in Bacillus hybrid species is not associated with an erosion of heterozygosity as known in other hybrid asexuals. Our results provide a stepping stone toward understanding the transitions between reproductive modes and the proximate mechanisms of genome elimination

    Challenges of keyword-based location disclosure

    Full text link
    A practical solution to location privacy should be incremen-tally deployable. We claim it should hence reconcile the eco-nomic value of location to aggregators, usually ignored by prior works, with a user’s control over her information. Loca-tion information indeed is being collected and used by many mobile services to improve revenues, and this gives rise to a heated debate: Privacy advocates ask for stricter regula-tion on information collection, while companies argue that it would jeopardize the thriving economy of the mobile web. We describe a system that gives users control over their information and does not degrade the data given to aggre-gators. Recognizing that the first challenge is to express lo-cations in a way that is meaningful for advertisers and users, we propose a keyword based design. Keywords characterize locations, let the users inform the system about their sen-sitivity to disclosure, and build information directly usable by an advertiser’s targeting campaign. Our work makes two main contributions: we design a market of location infor-mation based on keywords and we analyze its robustness to attacks using data from ad-networks, geo-located services, and cell networks. Categories and Subject Descriptors Security and Privacy [Human and societal aspects of security and privacy]: Usability in security and privac

    The social effects of entrepreneurship on society and some potential remedies: four provocations

    Get PDF
    A rapidly growing research stream examines the social effects of entrepreneurship on society. This research assesses the rise of entrepreneurship as a dominant theme in society and studies how entrepreneurship contributes to the production and acceptance of socio-economic inequality regimes, social problems, class and power struggles, and systemic inequities. In this article, scholars present new perspectives on an organizational sociology-inspired research agenda of entrepreneurial capitalism and detail the potential remedies to bound the unfettered expansion of a narrow conception of entrepreneurship. Taken together, the essays put forward four central provocations: 1) reform the study and pedagogy of entrepreneurship by bringing in the humanities; 2) examine entrepreneurship as a cultural phenomenon shaping society; 3) go beyond the dominant biases in entrepreneurship research and pedagogy; and 4) explore alternative models to entrepreneurial capitalism. More scholarly work scrutinizing the entrepreneurship–society nexus is urgently needed, and these essays provide generative arguments toward further developing this research agenda

    Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    Get PDF
    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping

    Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children

    Get PDF
    Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C

    SARS-CoV-2-related MIS-C: a key to the viral and genetic causes of Kawasaki disease?

    Get PDF

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
    corecore