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Three macrophage migration inhibitory factor (MIF)-related sequences were identified from a Mytilus gal-
loprovincialis EST library. The consensus sequence included a 50-UTR of 32 nucleotides, the complete ORF
of 345 nucleotides, and a 30-UTR of 349 nucleotides. As for other MIFs, M. galloprovincialis ORF does not
include any signal or C-terminus extensions. The translated sequence of 115 amino acids possesses a
molecular mass of 12,681.4, a pI of 6.27 and a stability index of 21.48. Its 3D structure resembles human
MIF except for one shorter a-helix. Although evolutionary separated from ticks and vertebrates, Mg-MIF
appeared to be closely related to Pinctada fucata and Haliotis, but not to Chlamys farreri and Biomphalaria
glabrata. Numerous mutation points were observed within the Mg-MIF ORF, defining 11 amino acid vari-
ants within the mussels from Palavas-France and 14 amino acid variants within the mussels from
Palermo-Italy. The 2 major variants from Palavas were identical to 2 of the 4 major variants from Palermo.
In all the 18 Mg-MIF variants, residues involved in tautomerase and in oxidoreductase activities were
conserved. Generally, one mussel expressed 2 Mg-MIF amino acid sequences but with different frequen-
cies of occurrence. Mg-MIF is constitutively expressed principally in hemocytes and in the mantle. In con-
trast to other animal models, Mg-MIF expression was always down regulated following challenge by
bacteria and fungi, confirming previous data obtained with microarray. Down regulation started as soon
as 1 h and Mg-MIF expression returned to background 9–48 h after the challenge. Exception was regard-
ing the yeast, Candida albicans, down-regulation between 9 and 72 h, suggesting yeast and bacteria-fila-
mentous fungi trigger different mechanisms of elimination.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Cytokines are soluble mediators that play significant roles in
immune reactions by means of inter-cellular/molecular processes.
Numerous cytokines have been reported from diverse vertebrate
species (reviewed by http://www.copewithcytokines.de for in-
stance). The presence of cytokine-like activity or of related mRNA
have also been observed in nearly all invertebrate species, includ-
ing tunicates, echinoderms, annelids, nematodes, arachnids and in-
sects (reviewed by (Beschin et al., 2001)). A recent paper reveals
that the expression of a TNF a-like gene is involved in ascidian
inflammatory responses (Parrinello et al., 2008). In mollusks, first
indirect evidences of cytokines were obtained by cross-reactions
All rights reserved.

-MIF, macrophage migration
, open reading frame; UTR,

: +33 467 14 46 73.
Roch).
with anti-cytokine antibodies, in vitro activities of vertebrate cyto-
kines on invertebrate cells and activity of invertebrate sera on ver-
tebrate cells (reviewed by (Canesi et al., 2006; Ottaviani, 2006)). To
date, numerous EST-related to cytokines have been reported from
the Pacific oyster, Crassostrea gigas (Gueguen et al., 2003; Roberts
et al., 2008, 2009), the Mediterranean mussel, Mytilus galloprovin-
cialis (Venier et al., 2003), the Bay scallop, Argopecten irradians irra-
dians (Song et al., 2006) and the Antarctic bivalve, Laternula elliptica
(Park et al., 2008b). Among these, only 2 cytokines have been ana-
lyzed. The first was TNF-a-related factor from the Zhikong scallop,
Chlamys farreri, the expression of which was up-regulated in hemo-
cytes after 3 h in vitro contact with LPS (Yu et al., 2007), and from
C. gigas, also up-regulated 12 h following in vivo challenge with a
cocktail of four pathogenic Vibrio strains (Park et al., 2008a). The
second was IL-17 from C. gigas, with rapid accumulation of tran-
script following challenge by immersion in a cocktail of heat-killed
bacteria (Roberts et al., 2008, 2009).

Macrophage migration inhibitory factor (MIF) is a highly con-
served protein, which exerts wide-ranged activities in vertebrates.

https://core.ac.uk/display/53281575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.copewithcytokines.de
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http://www.sciencedirect.com/science/journal/0145305X
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It is a central mediator of innate immunity and has been shown to
correlate with regulation of macrophage functions (Onodera et al.,
1997), lymphocyte immunity (Abe et al., 2001) and a number of
immune and inflammatory diseases (del Vecchio et al., 2000). As
a consequence, more than 1000 scientific papers have been pub-
lished on MIF, which is a ubiquitous mediator functioning as a
cytokine, hormone or enzyme (Swope and Lolis, 1999). Its neuro-
endocrine role as mediator that increases the host response to
microbial endotoxins suggested that MIF is at the crossroads be-
tween endocrine and immune systems (Bacher et al., 1998; Lafu-
ente et al., 2009; Prieto-Lafuente et al., 2009). Indeed, MIF
contributes to broad-spectrum immune and inflammatory re-
sponses (Chaisavaneeyakorn et al., 2005; Oddo et al., 2005) and
is acting in immune evasion of some parasitic nematodes by mod-
ifying the activity of host cells (Pastrana et al., 1998; Wu et al.,
2003). In addition, MIF exhibits several unusual features that dis-
tinguished this factor from typical cytokines, for example enzy-
matic thiol-protein oxidoreductase and tautomerase/isomerase
activities (Kleemann et al., 1998).

MIF homologues have been detected in numerous animal spe-
cies, from nematodes, ticks and echinoderms to jawless and jawed
fishes, amphibians and chickens (Javeed et al., 2008), suggesting
that this molecule has been conserved over 1 billion years of evo-
lution. Only 4 cDNA sequences related to MIF have been reported
so far from gastropods (Mitta et al., 2005; Wang et al., 2009a)
and 2 from bivalves (Cui et al., 2011; Wang et al., 2009b). In addi-
tion, the role of MIF in the immune response against bacteria or
parasites has been investigated only in the gastropods, Haliotis
diversicolor (Wang et al., 2009a) and Biomphalaria glabrata (Baeza
Garcia et al., 2010), and in the bivalve, Pinctada fucata (Cui et al.,
2011).

In the present report, we (i) used 3 putative MIF sequences
identified from a M. galloprovincialis EST library to establish the
complete coding sequence and its phylogenetic relationships, (ii)
constructed a 3D molecular model of the deduced protein, (iii)
searched for polymorphism of Mg-MIF within and between M. gal-
loprovincialis populations of distant geographic origins, and (iv)
quantified the Mg-MIF gene expression in various tissues and in
hemocytes following in vivo challenges of the mussels.
2. Materials and methods

2.1. Mussels and hemocyte collections

Adult mussels, M. galloprovincialis (6–7 cm shell length), were
purchased in July 2008 from the marine farm Les Compagnons
de Maguelone, Palavas-France. Other mussels were purchased
from Fazio Vivaio Miticoltura, Palermo-Italy, during July–Septem-
ber 2009. They were acclimated for 24 h in a flow-through system
of oxygenated seawater before sampling. Hemolymph (0.8 ml per
mussel) was collected from the posterior adductor muscle with a
1 ml syringe containing 0.2 ml of the anti-coagulant modified
Alsever’s solution buffer (Torreilles et al., 1999). Hemocytes were
pelleted by 10 min centrifugation at 800g, 4 �C.
2.2. RNA extraction, reverse transcription, PCR and cDNA cloning

Total RNA was extracted according to the Trizol Reagent proto-
col (Invitrogen), resuspended in 20 ll of sterile distilled water and
concentrations were measured on spectrophotometer ND-1000
(NanoDrop Technologies). First strand cDNAs were synthesized
from 1 lg of total RNA using hexaprimers (Invitrogen) and murine
leukemia virus reverse transcriptase (Promega), and purified with
Wizard SV Gel and PCR Clean-up System (Promega) then kept in
sterile distilled water at �20 �C until use. Forward F2 and reverse
R3 PCR primers were hand-designed according to the consensus
sequence constructed based on MGC03559, MGC08770 and
MGC08785 (Fig. 1) from the M. galloprovincialis EST database
Mg_NOR01 (Venier et al., 2009). PCR program included initial
denaturing of 35 ng cDNA template by 2 min at 94 �C, followed
by 30 cycles of denaturing at 94 �C for 30 s, annealing at 55 �C
for 30 s and elongation at 72 �C for 1 min, and a final extension
at 72 �C for 5 min. The unique amplicon of 598 nucleotides was
cloned in the plasmid pCR II TOPO from the TOPO TA Cloning kit
(Invitrogen). Plasmids were isolated using Wizard Plus SV Mini-
prep (Promega) and specificity of inserts has been confirmed by
sequencings performed by Millegen (Labèges-France). Trans-
formed Escherichia coli colonies were individually transferred to
deep agar containing Luria-Bertoni medium and 50 lg/ml kanamy-
cin, in 96 well microtiter plates and sent to Agowa GmbH (Berlin-
Germany) for sequencing using M13 as universal primers. Each
clone was double strand sequenced and the sequences corrected
accordingly.

Regarding tissue expression patterns, total mRNA was extracted
from hemocytes, and from dissected gills, hepatopancreas, mantle,
muscle and foot from 12 mussels, and then mixed as 3 pools of 4
mussels for each tissue. Reverse transcription and PCR conditions
were performed as above but with primers F5 and R1 (Fig. 1).
Resulting amplifications of 202 base pairs were run in 1.5% agarose
gel. BET stained bands were photographed using the BioRad Gel-
Doc XR and scanned under the AlphaEaseFC software (Alpha
Innotech). Results are presented as the arithmetic mean of optical
density of the 3 pools ± SD. Data were analyzed with the Student’s
t-test for statistically significant difference (p < 0.05).

2.3. Analysis of cDNA and of deduced amino acid sequences

Several adjustments and comparisons have been made: (i) the
nucleotides from up-stream and down-stream the primers, includ-
ing the primer sequences, were removed, (ii) all the sequences
were aligned using Multalin (http://bioinfo.genopole-tou-
louse.prd.fr/multalin/multalin.html) and clustered according to
nucleotide sequences, (iii) UTRs were removed and coding se-
quences compared using Multalin, (iv) the different coding se-
quences were translated into pro-peptides (http://www.
expasy.ch/tools/dna.html), and (v) the resulting amino acid se-
quences compared using Multalin. Isoelectric points and instability
index were calculated by http://au.expasy.org/cgi-bin/protpa-
ram.html. Signal peptide prediction was analyzed using the Sig-
nalP-3.0 Server available at http://www.cbs.dtu.dk/services/
SignalP/.

2.4. Phylogenetic relationships and structural analysis

Sequences related to MIF from invertebrates and vertebrates
were subjected to multiple alignments using Clustal-W program.
Final sequence alignments were done using CLUSTAL-X v.1.81 29,
the similarity shaded with GeneDoc v.2.6.002. A phylogenetic tree
was constructed by the Neighbor-Joining method after 1000 boot-
strap iterations using CLC workbench 6.4. The protein structural
model was developed using the SWISS-MODEL and the Swiss-
PDB Viewer (Arnold et al., 2006) using the human model as com-
parison (Sun et al., 1996).

2.5. Challenges with bacteria and fungi

Hemocyte cDNA samples of mussels challenged with one injec-
tion of bacteria (Vibrio splendidus LGP32, Vibrio anguillarum, Micro-
coccus lysodeikticus) were those previously used for analysis of
lysozyme gene expression (Li et al., 2008). Fungal challenge con-
sisted of one injection of 50 ll of PBS–NaCl (2 mM KH2HPO4,

http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html
http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html
http://www.expasy.ch/tools/dna.html
http://www.expasy.ch/tools/dna.html
http://au.expasy.org/cgi-bin/protparam.html
http://au.expasy.org/cgi-bin/protparam.html
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/


Fig. 1. cDNA sequence of Mytilus galloprovincialis MIF as deposited in GenBank (JN564748). First ATG starting the MIF coding sequence and stop codon TGA are in bold.
Deduced amino acids are below corresponding codons. Conserved positions involved in the formation of the catalytic site (single boxed) and of the JAB1-binding site (double
boxed) are located within the amino acid sequence. Locations of primers F2, F5, R1 and R3, used in Section 2 are grey boxed. Poly-adenylation sites are bold-underlined.
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10 mM Na2HPO4, 3 mM KCl, 600 mM NaCl in distilled water, pH
7.4) containing 104 spores of the filamentous fungus, Fusarium
oxysporum, or of the yeast, Candida albicans, collected after 3 days
of cultivation at room temperature on PDA (Potato Dextrose Agar,
Sigma) in Petri dishes. Ten mussels per sampling end-point re-
ceived injection into the posterior adductor muscle through a hole
created by gentle filing on shells. After injection, mussels were re-
turned to 20 �C seawater. Sham injections consisted of 100 ll of
PBS–NaCl alone. Hemolymph (0.8 ml per mussel) was collected
from the posterior adductor muscle at 0, 1, 3, 6, 9, 12, 24, 48 and
72 h post-injection, in different batches of mussels each one being
bled only one time, with a 1 ml disposable syringe containing
0.2 ml of anti-coagulant modified Alsever’s solution. Hemolymph
from 10 mussels were pooled and hemocytes pelleted by 10 min
centrifugation at 800g, 4 �C. RNA purification and reverse tran-
scription were performed as in Section 2.2. The full process from
injection to cDNA synthesis was repeated 4 times.
Table 1
Alignments of NH2 terminal amino acid sequences of Mollusk MIF-related sequences
with the deduced consensus sequence constructed from the 3 Mytilus gall oprovincialis
EST sequences revealing the position of the first methionine. Identical amino acids are
grey boxed.
2.6. q-PCR using the SYBR green chemistry

Primer sequences used for MIF quantification were F5–R1
(Fig. 1). q-PCR mixture included: 1 ll first strand cDNA (10 ng),
0.25 ll of each specific primers at a concentration of 25 lM,
2.5 ll of mix (Roche) containing FastStart Taq DNA polymerase,
reaction buffer 2�, dNTP mix, SYBR green 1 dye and MgCl2. The
PCR program was started with initial Taq polymerase activation
at 95 �C for 10 min, followed by 50 cycles at 95 �C for 10 s, 62 �C
for 10 s and 72 �C for 15 s. Melting temperatures were measured
by returning to 62 �C for 30 s and gradual heating to 95 �C. Nega-
tive control reactions contained water in place of cDNA template
and were included in each run to ensure absence of contamination.
House keeping gene expression was represented by 28S ribosomal
RNA, using the forward primer 50-AAGCGAGAAAAGAAACTAAC-30

and the reverse primer 50-TTTACCTCTAAGCGGTTTCAC-30, as previ-
ously validated (Cellura et al., 2007; Li et al., 2008) with an anneal-
ing temperature of 65 �C. Calibration curves were obtained using
10-fold serial dilutions of MIF or 28S rRNA amplicons in 10 lg/
ml sonicated salmon sperm DNA (Sigma).
Crossing point values expressed in cycle numbers were mea-
sured according to the threshold position of 4.2 and converted into
Equivalent Target Amount (ETA) by the LightCycler 480 built-in
software (Roche) using statistical calibration curves and the com-
parative 2�DDCt method (Livak and Schmittgen, 2001). Expression
levels of Mg-MIF were calculated from the ratio of ETA for Mg-
MIF on ETA for 28S rRNA. Normalization of ratios was calculated
considering each ratio equal to 1 in unchallenged mussels and ex-
pressed as x-fold the ratio for unchallenged mussels. Data were
presented as the arithmetic mean of 4 different experiments each
one measured in quadruplicate ± SEM. Normality of data distribu-
tion was assayed using the Shapiro–Wilk test available at http://
cran.fr.r-project.org. Student’s t-test using t-Ease 2.8 ISI software
has been employed to compare data of end-point with expression
in unchallenged. Differences were considered significant for
p < 0.05.
3. Results

3.1. Complete coding sequence of Mg-MIF

Data mining of the M. galloprovincialis EST database Mg_NOR01
with MIF-like sequences from different organisms identified 3 se-
quences of 502, 681 and 724 nucleotides. None of these sequences
included the poly-A tail. A consensus sequence was constructed
and translated into amino acid sequence. Alignment of such amino
acid sequence with several other molluscan MIF-related sequences
found in database revealed the constant NH2 amino acid sequence

http://cran.fr.r-project.org
http://cran.fr.r-project.org


Table 2
Diversity of the MIF deduced amino acid sequences of Mytilus galloprovincialis from Palavas-France and Palermo-Italy. Note that residues involved in the tautomerase (open-
boxes) and oxidoreductase (grey-boxes) activities and the MIF family signature (underlined-light grey) are conserved, that the major sequence in Palavas and Palermo is identical,
the existence of 2 dominant sequences in Palavas versus 4 in Palermo and the frequent replacement of amino acid doublet K85N86 (46 in Palavas, 58 in Palermo) by TT (43 in
Palavas, 83 in Palermo).
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of MPxFxxxTNLP (Table 1). Consequently, the first methionine
coded by nucleotides 33–35 was considered to be the first amino
acid of the mature Mg-MIF protein. Computer analysis using the
software Signal P3.0 Server failed to predict any signal peptide
(not illustrated). Structure analysis of the consensus sequence of
729 nucleotides revealed the presence of an ORF coding for 115 ami-
no acids, with a 50-UTR of 32 nucleotides and a 30-UTR of 349 nucle-
otides including 2 poly-adenylation sites downstream the stop
codon (Fig. 1). It was deposited in GenBank under the Accession
No. JN564748 (released 03 September 2011). The protein of 115
amino acids corresponding to the major sequence from both Palavas
and Palermo (Table 2) possesses a theoretical pI of 6.27 resulting
from 14 negatively charged residues (D and E) and 13 positively
charged residues (R and K) and a molecular mass of 12,681.4. The
stability index of 21.48 classified the protein as stable although
numerous theoretical cleavage sites were identified for pepsins,
chymotrypsins, proteinase K and thermolysin, but none for caspas-
es. Catalytic sites P2, K33 and I65 involved in the tautomerase motif,
and C57GSV60 for oxydoreductase activity (Fig. 3), along with the
MIF family signature D55PCGSVELY(S/N)IGALG69 are conserved.
3.2. Phylogenetic relationships

Phylogeny reconstruction using BLAST analysis based on de-
duced amino acid sequences, revealed that Mg-MIF sequence from
Palavas presented the closest relationships with the bivalve P. fuca-
ta (Fig. 2). In fact, molluscan MIFs segregated into 2 clusters, mix-
ing with gastropods and bivalves. Gastropod MIF sequences from
Haliotis discus, H. diversicolor and Lottia gigantea are closely related
but separated from B. glabrata, which is related to the bivalve,
C. farreri. Vertebrate MIF were grouped in a homogeneous cluster
including fishes and mammals. A third cluster is heterogeneous
as grouping MIF sequences from diverse invertebrate phyla. Final-
ly, echinoderm (Strongylocentrotus purpuratus) and urochordate
(Ciona intestinalis) appeared among the molluscan MIF cluster
but with some evolutionary distance. Computer analysis showed
that bivalve MIF sequences are extremely stable proteins whereas
gastropod MIF sequences are heterogeneous regarding theoretical
pI and stability: MIF from H. discus discus and from L. gigantea ap-
peared surprisingly unstable (Table 3).

3.3. 3D modeling

Fig. 3 shows the molecular model resulting from homology
modeling process performed on basis of known human MIF molec-
ular structure (e-value 3.20e–42). Mg-MIF was superimposed onto
human MIF (SwissProt 1gd0B) revealing 39.5% identity between
the 2 structures. Mg-MIF possesses 2 a-helices and 6 b-sheets as
reported for human MIF chain B model (Sun et al., 1996). Oxidore-
ductase catalytic site and tautomerase motif are conserved. The
main difference concerns the a-helix between amino acids 68–
76, which is 7 amino acids shorten in Mg-MIF than in human MIF.

3.4. Expression pattern in various tissues

PCR was performed on RNA extracted from hemocytes and from
various dissected tissues using primers F5–R1 (Fig. 1) stopping after
30 cycles of amplification. Clearly hemocytes presented the highest
content on Mg-MIF mRNA, a level significantly different from gills
(1.67 � folds), hepatopancreas (1.67 � folds), foot (2.13 � folds)
and muscle (2.19 � folds), but not from the mantle (Fig. 4).

3.5. MIF sequence diversity among mussel populations

PCR primers F2 and R3 (Fig. 1) were designed to amplify the
complete coding sequence of Mg-MIF cDNA prepared from hemo-
cytes collected from one pool of 10 (Palavas-France) or 6 (Paler-
mo-Italy) unchallenged mussels. Alignment of the amplicons
obtained revealed many differences detailed below.

3.5.1. M. galloprovincialis from Palavas-France
Alignment of the nucleotide sequences obtained from 89 clones

revealed 48 different sequences of 557 nucleotides in length. The
ORF was of 345 nucleotides presenting 25 different sequences
due to the presence of 21 mutation points among which 11 are si-
lent (Supplemented Table 1), resulting in only 11 different peptides



Fig. 2. Phylogenetic relationships between the deduced amino acid sequence of M.
galloprovincialis MIF complete coding sequence and other MIF-related sequences
found in databases. The respective GenBank accession numbers are as follows:
Biomphalaria glabrata CK989824; Chlamys farreri DT716558.1; Ciona intestinalis
XM002120850; Strongylocentrotus purpuratus XP001191035; Haliotis diversicolor
EU284114; Haliotis discus discus FJ435176; Lottia gigantea Joint Genome Insti-
tute159446; Mytilus galloprovincialis JN564748; Pinctada fucata HQ448854; Ancy-
lostoma ceylanicum EU442191; Ascaris suum AB158366; Trichinella spiralis
AY050661; Haemaphysalis longicornis AB255601; Amblyomma americanum
AF126688; Cyprinus carpio EU368584; Danio rerio BC171422; Homo sapiens
CR456520; Mus musculus M010798; Petromyzon marinus APP33793; Myxine glutin-
osa APP33975. Note that mollusk MIF coding sequences segregated in 2 clusters,
mixing bivalves and gastropods (boxed).

Fig. 3. 3D model structure of mussel MIF based on the template of human MIF
available at PDB 1gd0B for human macrophage inhibition factor chain B. Homol-
ogies are in green, differences are in red. Note the conserved 2 a-helix and 6 b-
sheets, and the oxidoreductase and tautomerase putative sites (circles). The main
difference concerned the length of one a-helix, which is 7 amino acids shorter in
Mg-MIF (arrow). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)
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(Table 2). Two of these peptides appeared dominant, accounting
for 65 of the 89 sequences. By contrast, 11 amino acid sequences
differed from the major one by only one amino acid. Seven of the
mutations resulted in replacements by equivalent amino acid. Fi-
nally, only 3 mutations corresponded to non-equivalent amino
acid replacements, 2 (D by E in position 13) found in 2 clones each
and one (K by T in position 85) found in nearly half the clones (Ta-
ble 2). The first 6 nucleotides corresponding to the partial 50-UTR
did not reveal any variation. In contrast, the 30-UTR of 199 nucleo-
tides shared by 66 sequences of 89, was highly variable including
30 mutation points. In addition, 7 sequences included deletion(s)
and 16 sequences included addition(s) of nucleotides. Conse-
quently, the 30-UTR ranged from 196 to 208 nucleotides (data not
shown).

3.5.2. M. galloprovincialis from Palermo-Italy
Alignment of the nucleotide sequences obtained from 141

clones revealed 41 different sequences of 557 nucleotides in
length. The ORF was of 345 nucleotides presenting 33 different se-
quences due to the presence of 16 mutation points among which 5
Table 3
Some molecular characteristics of MIF coding sequences from molluscs, calculated from seq
stability of bivalve sequences and the heterogeneity of gastropod MIFs regarding pI and s

Number of amino acids M

Bivalves
Mytilus galloprovincialis 115 1
Chlamys farreri 126 1
Pinctada fucata 119 1

Gastropods
Haliotis diversicolor 127 1
Haliotis discus discus 119 1
Biomphalaria glabrata 118 1
Lottia gigantea 121 1
are silent (Supplemented Table 1) resulting in 14 different peptides
(Table 2). Four sequences appeared dominant, accounting for 100
of the 141 sequences. By contrast, 4 amino acid sequences were
found in only one clone each. Five mutations resulted in replace-
ments by equivalent amino acid and 7 mutations corresponded
to non-equivalent amino acid replacements. As for the mussels
from Palavas, the first 6 nucleotides corresponding to the partial
50-UTR showed no variation. In contrast, the 30-UTR of 199 nucleo-
tides shared by 130 sequences of 141 was highly variable including
15 mutation points. In addition, 10 sequences presented dele-
tion(s), of which one is of 37 consecutive nucleotides, and one se-
quence presented 7 extra nucleotides. Consequently, 30-UTR
ranged from 159 to 206 nucleotides (data not shown).
3.5.3. Comparison between Palavas and Palermo sequences
Only 7 of the 18 different amino acid sequences were common

to both mussel populations (Table 2). The 2 major sequences from
Palavas were also among the major sequences from Palermo. One
of the other major Palermo sequences was found only once in Pal-
avas, whereas the other 4 shared sequences were found 1–7 times.
Amino acid residues involved in the tautomerase and oxidoreduc-
tase activities, as well as MIF family signature, are conserved. In
addition, the 2 amino acids from positions 85–86 represented a
hot-spot of mutation with the frequent replacement of the doublet
KN, found in 46 sequences from Palavas and in 58 from Palermo, by
TT found in 43 sequences from Palavas and in 83 from Palermo.
3.5.4. Comparison between individual mussels
Mg-MIF cDNA was prepared from hemocytes collected from 6

individual mussels from Palermo. Mg-MIF complete coding
uences released in database (see accession numbers on Fig. 2 legend). Note the robust
tability.

olecular mass Estimated pI Stability index

2,681.4 6.27 21.48
4,537.5 6.51 24.46
3,259.2 5.87 25.19

4,016.1 6.90 35.33
3,372.5 5.91 55.53
3,227.5 8.75 34.56
3,426.5 5.90 44.41
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Fig. 4. Tissue expression pattern of Mg-MIF mRNA measured by semi-quantitative PCR and presented as arithmetic mean of integrated optical density values of BET stained
bands measured on quadruplicates in 3 pools ± SD (bar). Note the highest content in hemocytes and in mantle. Expression in hemocytes was significantly different from all
other tissues (⁄p < 0.05) except from mantle.

Table 4
Expression of Mg-MIF coding sequences and corresponding translated amino acid sequences in individual mussels from Palermo. Note that each mussel expressed at least 2
coding sequences with the corresponding translated amino acid sequences, and that frequencies of occurrence of such amino acid sequences are extremely variable.

Mussel name Number of MIF sequenced clones Number of different sequences % of amino acid sequences

Coding sequences Amino acids

12L 30 2 2 54
46

14L 29 2 2 55
45

1S 25 4 3 80
16
4

5S 29 2 2 62
38

14S 30 2 2 70
30

15S 16 2 2 87
13
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sequences were amplified with the primers F2–R3 and 16–30
clones per mussel have been randomly double strand sequenced.
Two MIF coding sequences were obtained from 5 mussels, which
gave rise to 2 translated amino acid sequences (Table 4). Frequen-
cies of such amino acid sequences were extremely variable, from
nearly equally represented up to one sequence present in 87% of
the clones. Four MIF coding sequences were obtained from the
mussel 1S; translation into amino acids revealed only 3 sequences,
one was present in 80% of the sequenced clones.
3.6. Expression following challenges

Mg-MIF expression has been quantified by q-PCR using the
primers F5–R1 applied to hemocytes collected from mussels chal-
lenged by one injection of bacteria, fungi or PBS–NaCl (Fig. 5).
Injection of both V. splendidus and V. anguillarum resulted in a sig-
nificant decrease of MIF mRNA as soon as 1 h post-injection, and
still significantly lower at 24 h. Injection of M. lysodeikticus induced
similar decrease although non-statistically significant between 3
and 9 h post-injection. In the 3 bacteria-injected samples, return
to background expression occurred 2 days post-injection. Regard-
ing injections of fungi, the response of MIF gene was contrasted:
early significant decrease induced by F. oxysporum returning to
background 9 h post-injection, versus late decrease induced by
C. albicans. The latest was the only challenge with delayed effect
starting 9 h post-injection and lasting at least 3 days. Unexpected
was the decrease observed in the first hours following saline injec-
tion although considered as a control sham injection.

4. Discussion

MIF is a peculiar cytokine and many questions about it remain
unclear. One of them is related to the absence of signal peptide re-
ported in murine, human and fish MIF sequences, as we observed
in M. galloprovincialis. Thus, evidence suggested that MIF does
not travel to the endoplasmic reticulum, instead it is secreted via
a non-classical export pathway involving an ATP binding cassette
transporter (Flieger et al., 2003). MIF is part of the growing list of
cytokines, such as interleukin-1 (IL-1) and basic fibroblast growth
factor (bFGF), which are released from cells by non-classical path-
ways. No COOH-terminus extension was also reported for any MIF-
related sequences, making MIF ORF a sequence coding directly for
the active peptide, and not including a precursor. Computer analy-
sis of the 115 amino acids resulting from translation of Mg-MIF
mRNA revealed a stable protein with molecular mass and pI similar
to the ones of abalone, H. diversicolor, and H. discus discus. However,
the later was evaluated as unstable. Two other MIF-related se-
quences identified in the Zhikong scallop, C. farreri (Wang et al.,
2009b), and in the freshwater gastropod, B. glabrata, do not match
the previous characteristics and reveal poor alignment, even be-
tween them. Consequently, although claimed as a highly conserved
molecule, molluscan MIF appeared diverse, even within bivalves
and within gastropods.
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MIF from the mollusks, B. glabrata, H. diversicolor and P. fucata,
shared only 30% sequence similarity but high sequence and struc-
tural homologies with other members of the MIF vertebrate family
(Cui et al., 2011). This includes residues, which are invariant across
the whole MIF family, or involved in tautomerase and oxydoreduc-
tase activities, including in Mg-MIF. By contrast, cysteine patterns
are extremely variable, from the unique cysteine in position 57
present in Mg-MIF, in the pearl oyster, P. fucata, in the Chinese mit-
ten crab, Eriocheir sinensis, and in the protozoan parasite, Perkinsus
marinus, MIF sequences, to the 4 cysteines of the Atlantic hagfish,
Myxine glutinosa, and 3 in mammals. As a consequence, the cys-
teine array cannot be considered as a structural motif useful for
MIF identification and/or molecular evolution.

To go deeper into the relationships of Mg-MIF, we searched for
3D structural homology with established MIF molecular models
deposited in databank. The putative molecular modeling of Mg-
MIF had similar structure to that of human MIF chain B including
the 2 a-helices and 6 b-sheets. In addition to minor differences
in amino acid replacements along the sequence, the major differ-
ence occurred on the length of the a-helix between tautomerase
and oxidoreductase sites. This a-helix is 7 amino acids shorter in
Mg-MIF compared to the human counterpart (Sun et al., 1996).

In vertebrates, MIF is constitutively expressed by a variety of
cells and tissues, including monocytes and macrophages and some
endocrine and epithelial cells (Roger et al., 2007). It is rapidly
released into the circulation from pre-formed intracellular vesicles
by a non conventional leaderless pathway (Benigni et al., 2000),
particularly after exposure to toxins and microbial cell wall com-
ponents and pro-inflammatory mediators in response to stress
(Bacher et al., 1998). We demonstrated that Mg-MIF is constitu-
tively expressed in various tissues, but preferentially in hemocytes
and mantle containing the gonads in mussels. Hemocytes infiltrate
all tissues due to the mussel open circulatory system. As a conse-
quence, it is not surprising to observe some MIF mRNA in all tis-
sues. In all other animal models, MIF was also found as
constitutively expressed in multiple organs, such are digestive
tract, heart, hepatopancreas, foot and hemocytes from B. glabrata
(Garcia et al., 2010) and the pearl oyster P. fucata (Cui et al.,
2011), hepatopancreas, muscle, ovary, gill and mantle from the
abalone, H. diversicolor (Wang et al., 2009a). In the gastropod, B.
glabrata, MIF was found in vitro to be more abundant in spreading
granulocytes showing pseudopods, the hemocyte subpopulation
involved in immune response, than in non spreading hemocytes
or hyalinocytes (Baeza Garcia et al., 2010) suggesting a role in
the immune response. Also in fish, MIF transcripts are ubiquitously
and constitutively expressed in several healthy tissues, as brain, li-
ver, blood, gill, spleen, muscle, stomach, head kidney and heart.
High constitutive expression in brain, joined to significant induc-
ible capability revealed the neuroendocrine mediator role of MIF
(Mao et al., 2010).
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Mussels from Palavas and from Palermo expressed several MIF
mRNA variants, some of them being translated in different amino
acid sequences. Meanwhile, in both locations, 2 and 4 sequences
of 11 and 14, respectively, are more frequent. Among the remain-
ing amino acid sequences, 9 were encountered only once or twice.
Several other proteins were previously reported as highly polymor-
phic in mussels: antimicrobial peptides defensin, mytilin (Parisi
et al., 2009) and particularly myticin (Costa et al., 2009; Pallavicini
et al., 2008), C1q-like (Gerdol et al., 2011; Gestal et al., 2010), FREPs
(Romero et al., 2011) and antifungal mytimycin (Sonthi et al.,
2011). Although not understood, no doubt that the existence of
numerous variants probably corresponds to as yet undefined func-
tional mechanism(s).

Discovered almost 40 years ago as a T-cell cytokine, MIF is a
critical mediator of septic shock as demonstrated in TNFa knock-
out mice and confirmed by the presence of high concentrations
of MIF in the plasma of human patients with severe sepsis or septic
shock (Calandra et al., 2000). Rapidly released by macrophages
after stimulation with bacterial endotoxins and exotoxins, MIF
stimulates the production of pro-inflammatory mediators by
immune cells. Indeed, MIF-deficient macrophages were shown to
be hypo responsive to stimulation with LPS and Gram-negative
bacteria (Roger et al., 2003). Conversely, serum MIF concentration
is high in patients with pulmonary tuberculosis and in HIV sero-
positive human (Kibiki et al., 2007). After endogenous glucocorti-
coïds or stress stimulation, increase in cellular MIF content was
detected within 12–24 h in immunological and endocrine organs,
and after 96 h in skin and muscle. Since MIF mRNA expression
did not change, it has been hypothesized that increase in cellular
MIF content resulted from post-transcriptional regulatory mecha-
nisms (Fingerle-Rowson et al., 2003).

Regarding invertebrates, constant observations concerned up
regulation of MIF expression following various challenges. Injec-
tion of V. anguillarum resulted in 5- to 10-fold up regulation in
hepatopancreas after 6–12 h, and 6- to 17-fold in hemocytes after
4–8 h in the Chinese mitten crab, E. sinensis (Li et al., 2011b). In
both ticks, Haemaphysalis longicornis and Amblyomma americanum,
MIF expression was up regulated during blood feeding (Bowen
et al., 2010; Umemiya et al., 2007). In the gastropod abalone, H.
diversicolor, MIF expression level in hepatopancreas was about
2-fold up regulated at 24 and 48 h after Vibrio parahemolyticus
injection (Wang et al., 2009a). Also in the bivalves C. farreri and
P. fucata, expression of MIF was significantly up regulated in hemo-
cytes at 6, 24 and 48 h after LPS treatment (Li et al., 2011a) and 8 h
after injection of Vibrio alginolyticus (Cui et al., 2011). Our results
did not match this pattern as we reported a rapid and general
down regulation of Mg-MIF expression in hemocytes whatever
the challenge: bacteria, fungi or even saline injection.

Fortunately, our data are in agreement with previous observa-
tions performed on mussel hemocytes injected with V. splendidus
at 3 and 48 h and measured by running a DNA microarray, i.e. a
totally different technique eliminating eventual bias due to
q-PCR technology (Venier et al., 2011). We controlled that down
regulation of myticin and up regulation of defensin (data not
shown) evolved in the present bacterial challenged samples as pre-
viously observed (Cellura et al., 2007), validating the general down
regulation we reported for Mg-MIF. Although difficult to under-
stand, Mg-MIF does not behave as in other animal models. One
can hypothesize that the MIF gene and/or hemocytes expressing
MIF are involved in mussels in other yet non-elucidated innate
mechanism(s) resulting in the observed down regulation.
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