2,389 research outputs found

    COVID-19 Conversation Analysis

    Get PDF
    In this paper, I present the findings from an empirical project completed for a college-level Communication Analysis class. These findings, while containing scholarly terms and nomenclature, are highly applicable to any day-to-day interactions had between any multitude of participants. It is my goal, throughout this paper, to provide readers with a more in-depth look at the ways in which our words and actions convey our messages in ways we didn’t even consciously mean

    Destruction of dimethyl ether and methyl formate by collisions with He+^+

    Full text link
    To correctly model the abundances of interstellar complex organic molecules (iCOMS) in different environments, both formation and destruction routes should be appropriately accounted for. While several scenarios have been explored for the formation of iCOMs via grain and gas-phase processes, much less work has been devoted to understanding the relevant destruction pathways, with special reference to (dissociative) charge exchange or proton transfer reactions with abundant atomic and molecular ions such as He+^+, H3+_3^+ and HCO+^+. By using a combined experimental and theoretical methodology we provide new values for the rate coefficients and branching ratios (BRs) of the reactions of He+^+ ions with two important iCOMs, namely dimethyl ether (DME) and methyl formate (MF). We also review the destruction routes of DME and MF by other two abundant ions, namely H3+_3^+ and HCO+^+. Based on our recent laboratory measurements of cross sections and BRs for the DME/MF + He+^+ reactions over a wide collision energy range, we extend our theoretical insights on the selectivity of the microscopic dynamics to calculate the rate coefficients k(T)k(T) in the temperature range from 10 to 298 K. We implement these new and revised kinetic data in a general model of cold and warm gas, simulating environments where DME and MF have been detected. Due to stereodynamical effects present at low collision energies, the rate coefficients, BRs and temperature dependences here proposed differ substantially from those reported in KIDA and UDfA, two of the most widely used astrochemical databases. These revised rates impact the predicted abundances of DME and MF, with variations up to 40% in cold gases and physical conditions similar to those present in prestellar coresComment: accepted for publication in Astronomy and Astrophysics (manuscript no. AA/2018/34585), 10 pages, 3 figure

    Array Antenna Power Pattern Analysis Through Quantum Computing

    Full text link
    A method for the analysis of the power pattern of phased array antennas (PAs) based on the quantum Fourier transform (QFT) is proposed. The computation of the power pattern given the set of complex excitations of the PA elements is addressed within the quantum computing (QC) framework by means of a customized procedure that exploits the quantum mechanics principles and theory. A representative set of numerical results, yielded with a quantum computer emulator, is reported and discussed to assess the reliability of the proposed method by pointing out its features in comparison with the classical approach based on the discrete Fourier transform (DFT), as well.Comment: 35 pages, 12 figure

    A Self-Replicating Single-Shape Tiling Technique for the Design of Highly Modular Planar Phased Arrays -- The Case of L-Shaped Rep-Tiles

    Full text link
    The design of irregular planar phased arrays (PAs) characterized by a highly-modular architecture is addressed. By exploiting the property of self-replicating tile shapes, also known as rep-tiles, the arising array layouts consist of tiles having different sizes, but equal shape, all being generated by assembling a finite number of smaller and congruent copies of a single elementary building-block. Towards this end, a deterministic optimization strategy is used so that the arising rep-tile arrangement of the planar PA is an optimal trade-off between complexity, costs, and fitting of user-defined requirements on the radiated power pattern, while guaranteeing the complete overlay of the array aperture. As a representative instance, such a synthesis method is applied to tile rectangular apertures with L-shaped tromino tiles. A set of representative results, concerned with ideal and real antenna models, as well, is reported for validation purposes, but also to point out the possibility/effectiveness of the proposed approach, unlike state-of-the-art tiling techniques, to reliably handle large-size array apertures.Comment: 56 pages, 22 figure

    Real-time single image depth perception in the wild with handheld devices

    Full text link
    Depth perception is paramount to tackle real-world problems, ranging from autonomous driving to consumer applications. For the latter, depth estimation from a single image represents the most versatile solution, since a standard camera is available on almost any handheld device. Nonetheless, two main issues limit its practical deployment: i) the low reliability when deployed in-the-wild and ii) the demanding resource requirements to achieve real-time performance, often not compatible with such devices. Therefore, in this paper, we deeply investigate these issues showing how they are both addressable adopting appropriate network design and training strategies -- also outlining how to map the resulting networks on handheld devices to achieve real-time performance. Our thorough evaluation highlights the ability of such fast networks to generalize well to new environments, a crucial feature required to tackle the extremely varied contexts faced in real applications. Indeed, to further support this evidence, we report experimental results concerning real-time depth-aware augmented reality and image blurring with smartphones in-the-wild.Comment: 11 pages, 9 figure

    Time-Resolved F\uf6rster Resonance Energy Transfer Analysis of Single-Nucleotide Polymorphisms: Towards Molecular Typing of Genes on Non-Purified and Non-PCR-Amplified DNA

    Get PDF
    Quantitative assessment of the fluorescence resonance energy transfer (FRET) efficiency between chromophores labeling the opposite ends of gene-specific oligonucleotide probes is a powerful tool to detect DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, time-correlated single-photon counting. Recently, we probed by such technique the highly polymorphic DQB1 human gene. Namely, by using a single oligonucleotide probe and acting on non-amplified DNA samples contained in untreated cell extracts, we demonstrated the ability of pursuing unambiguous recognition of subjects bearing the homozygous DQB1-0201 genotype by exploiting the subtle, yet statistically significant, structural differences between the duplex formed by the probe with DQB1-0201 on the one end and duplexes formed with any of the other alleles, on the other end. The relevance of homozygous DQB1-0201 genotype recognition reseeds in the fact that the latter is overexpressed in subjects affected by insulin-dependent diabetes mellitus in north-eastern Italy. In this article we review our preceding achievements and report on additional in-vitro experiments aimed at characterizing the duplexes obtained by annealing of the DQB1 allelic variants with a second oligonucleotide probe, with the final scope to achieve full genotyping of DQB1 on raw DNA samples by means of cross-combination of the FRET responses of both probes
    • …
    corecore