255 research outputs found

    A neonatal case of an elongated soft palate

    Get PDF
    The development of stridor and periodic desaturation in a 2-day-old neonate born at term lead to the suspicion of upper airway obstruction. The patient underwent flexible fiberoptic laryngo-tracheo-bronchoscopy and was diagnosed as having an elongated soft palate and secondary mild pharyngomalacia. Early intervention with high PEEP therapy using nasal CPAP led to improvement in the patient condition

    Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG

    Get PDF
    Hashimoto H., Hasegawa Y., Araki T., et al. Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG. Scientific Reports 7, 14262 (2017); https://doi.org/10.1038/s41598-017-14452-3.High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550-750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity

    Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs

    Get PDF
    Bioengineering of functional lung tissue by using whole lung scaffolds has been proposed as a potential alternative for patients awaiting lung transplant. Previous studies have demonstrated that vascular resistance (Rv) could be altered to optimize the process of obtaining suitable lung scaffolds. Therefore, this work was aimed at determining how lung inflation (tracheal pressure) and perfusion (pulmonary arterial pressure) affect vascular resistance. This study was carried out using the lungs excised from 5 healthy male Sprague-Dawley rats. The trachea was cannulated and connected to a continuous positive airway pressure (CPAP) device to provide a tracheal pressure ranging from 0 to 15 cmH(2)O. The pulmonary artery was cannulated and connected to a controlled perfusion system with continuous pressure (gravimetric level) ranging from 5 to 30 cmH(2)O. Effective Rv was calculated by ratio of pulmonary artery pressure (P-PA) by pulmonary artery flow (V'(PA)). Rv in the decellularized lungs scaffolds decreased at increasing V'(PA), stabilizing at a pulmonary arterial pressure greater than 20 cmH(2)O. On the other hand, CPAP had no influence on vascular resistance in the lung scaffolds after being subjected to pulmonary artery pressure of 5 cmH(2)O. In conclusion, compared to positive airway pressure, arterial lung pressure markedly influences the mechanics of vascular resistance in decellularized lungs. (C) 2016 Elsevier Ltd. All rights reserved

    Air quality co-benefits from climate mitigation for human health in South Korea

    Get PDF
    Climate change mitigation efforts to reduce greenhouse gas (GHG) emissions have associated costs, but there are also potential benefits from improved air quality, such as public health improvements and the associated cost savings. A multidisciplinary modeling approach can better assess the co-benefits from climate mitigation for human health and provide a justifiable basis for establishment of adequate climate change mitigation policies and public health actions. An integrated research framework was adopted by combining a computable general equilibrium model, an air quality model, and a health impact assessment model, to explore the long-term economic impacts of climate change mitigation in South Korea through 2050. Mitigation costs were further compared with health-related economic benefits under different socioeconomic and climate change mitigation scenarios. Achieving ambitious targets (i.e., stabilization of the radiative forcing level at 3.4 W/m2) would cost 1.3-8.5 billion USD in 2050, depending on varying carbon prices from different integrated assessment models. By contrast, achieving these same targets would reduce costs by 23 billion USD from the valuation of avoided premature mortality, 0.14 billion USD from health expenditures, and 0.38 billion USD from reduced lost work hours, demonstrating that health benefits alone noticeably offset the costs of cutting GHG emissions in South Korea

    Development and applicability of Hospital Survey on Patient Safety Culture (HSOPS) in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patient safety culture at healthcare organizations plays an important role in guaranteeing, improving and promoting overall patient safety. Although several conceptual frameworks have been proposed in the past, no standard measurement tool has yet been developed for Japan.</p> <p>Methods</p> <p>In order to examine possibilities to introduce the Hospital Survey on Patient Safety Culture (HSOPS) in Japan, the authors of this study translated the HSOPS into Japanese, and evaluated its factor structure, internal consistency, and construct validity. Healthcare workers (n = 6,395) from 13 acute care general hospitals in Japan participated in this survey.</p> <p>Results</p> <p>Confirmatory factor analysis indicated that the Japanese HSOPS' 12-factor model was selected as the most pertinent, and showed a sufficiently high standard partial regression coefficient. The internal reliability of the subscale scores was 0.46-0.88. The construct validity of each safety culture sub-dimension was confirmed by polychoric correlation, and by an ordered probit analysis.</p> <p>Conclusions</p> <p>The results of the present study indicate that the factor structures of the Japanese and the American HSOPS are almost identical, and that the Japanese HSOPS has acceptable levels of internal reliability and construct validity. This shows that the HSOPS can be introduced in Japan.</p

    Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation

    Get PDF
    The exposure of workers to hot environments is expected to increase as a result of climate change. In order to prevent heat-related illness, it is recommended that workers take breaks during working hours. However, this would lead to reductions in worktime and labor productivity. In this study, we estimate the economic cost of heat-related illness prevention through worker breaks associated with climate change under a wide range of climatic and socioeconomic conditions. We calculate the worktime reduction based on the recommendation of work/rest ratio and the estimated future wet bulb glove temperature, which is an index of heat stresses. Corresponding GDP losses (cost of heat-related illness prevention through worker breaks) are estimated using a computable general equilibrium model throughout this century. Under the highest emission scenario, GDP losses in 2100 will range from 2.6 to 4.0% compared to the current climate conditions. On the other hand, GDP losses will be less than 0.5% if the 2.0 °C goal is achieved. The benefit of climate-change mitigation for avoiding worktime loss is comparable to the cost of mitigation (cost of the greenhouse gas emission reduction) under the 2.0 °C goal. The relationship between the cost of heat-related illness prevention through worker breaks and global average temperature rise is approximately linear, and the difference in economic loss between the 1.5 °C goal and the 2.0 °C goal is expected to be approximately 0.3% of global GDP in 2100. Although climate mitigation and socioeconomic development can limit the vulnerable regions and sectors, particularly in developing countries, outdoor work is still expected to be affected. The effectiveness of some adaptation measures such as additional installation of air conditioning devices or shifting the time of day for working are also suggested. In order to reduce the economic impacts, adaptation measures should also be implemented as well as pursing ambitious climate change mitigation targets
    corecore