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Itaru Nishioka, Toshihiko Hirooka, Member, IEEE, and Akira Hasegawa, Life Fellow, IEEE

Abstract—Solitons in dispersion managed lines have large tol-
erance to polarization mode dispersion (PMD) because of strong
nonlinear trap helped by a power enhancement factor compared
with conventional solitons. We present numerical results on the ef-
fect of map strength on PMD and discuss the optimum choice of

in practical soliton systems.

Index Terms—Dispersion management, optical communication,
optical soliton, polarization mode dispersion.

I. INTRODUCTION

I N higher-bit-rate optical transmission systems, polarization
mode dispersion (PMD) is one of the major factors that limit

the propagation distance. However, optical solitons can reduce
the effect of PMD, compared with linear pulses, due to its non-
linear trapping force (Kerr effect) [1]–[4]. Since large nonlin-
earity results in the effective reduction of PMD, it is expected
that dispersion-managed solitons, which require higher power
than conventional solitons with the same average dispersion [5],
have an advantage over PMD. The nonlinearity required for
dispersion-managed soliton transmission depends on the map
strength , defined as

(1)

where
and positive and negative group velocity disper-

sion with corresponding lengths and , re-
spectively;
input pulsewidth;

and wavelength and the velocity of light, respec-
tively.

The resistance of dispersion-managed solitons to PMD is
studied in [4] and [6]. In [4], pulse broadening of solitons
due to PMD is shown to increase logarithmically with dis-
tance. This analysis, however, is limited to an average soliton
regime with relatively weak PMD and may not be applied to
strongly dispersion-managed systems. In [6], strong dispersion
management is shown to be less effective in improving the
tolerance to PMD in comparison with conventional solitons.
In their calculations, however, nonlinear interaction between
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neighboring pulses is included, which significantly degrades
the transmission performance especially in a regime with large

.
In this letter, we study the dependence of PMD on the map

strength in dispersion-managed soliton systems in order to elu-
cidate the trapping effect.

II. CONSTANT BIREFRINGENCE

Propagation of orthogonally polarized optical pulse compo-
nents and in a dispersion management line is described
by the so called coupled nonlinear Schrödinger equation (cou-
pled-NLSE) of the form [8]

(2)

where , and , , , and repre-
sent normalized time, normalized distance, the differential wave
number of the orthogonal components and the differential group
velocity, respectively. Although (2) is not integrable, we can de-
rive the ordinary differential equation which describes the evo-
lution of pulse parameters by using the variational method with
a proper ansatz of the propagating pulse. For the case of a strong
dispersion management line, this can be assumed by the fol-
lowing Gaussian-shape pulse:

(3)

where , and , , , , , and
are their amplitude, pulsewidth, frequency chirp, frequency,

time position and phase, respectively. By employing the vari-
ational method to the equation in which the last terms on the
left-hand sides of (2) are neglected, we obtain the ordinary dif-
ferential equations for the difference of frequency and time po-
sition in the form

(4)

where and is the pulse energy described
as . Equation (4) shows that and
behave periodically along in small , whereas in the linear
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Fig. 1. Trajectories in the (��; �T ) plane described in (4) forS = 0:43,5:0,
9:53 with � = 0:1. The dispersion managed line is composed of fibers with
anomalous (nZ < Z < nZ + Z =4, nZ + 3Z =4 < Z < (n+ 1)Z )
and normal (nZ +Z =4 < Z < nZ +3Z =4) dispersion withZ = 0:48.

case, and increases linearly. Fig. 1 illustrates the
trajectories in the ( ) plane at every period of the dis-
persion map for various in the case of initial polarization
axis. The period of these trajectories is short for largedue to
large cross-phase modulation (XPM) induced by higher nonlin-
earity, whereas the pulse broadens considerably by large local
dispersion. This implies that nonlinear trap by XPM, referred
to as soliton trap [1], depends not only on peak power but on
the overlap of polarized components. Hence, nonlinear trap be-
comes effective for large in constant birefringence.

III. RANDOM BIREFRINGENCE

Based on the result obtained above, we expect that power en-
hancement in strongly dispersion managed solitons helps sup-
press the effect of PMD also in randomly varying birefringent
fibers. In the following, we assume fibers are cascade of short
segments with constant length and the group velocity bire-
fringence . At each segment, the polarization states and
are random variables following uniform and Gaussian distribu-
tions, respectively [3], [9]. In this model, the effect of PMD is
measured as with the unit of ps/km [10].

We analyze the root-mean-square (rms) of due to PMD
by using (4). Expanding this equation around and
taking the first order, (4) is reduced to Langevin equation. Fur-
thermore, in a small regime, replacing the local dispersion

with the average dispersion under the condition that is
white Gaussian process which has the property and

, we obtain

(5)

where . Note that in conventional
solitons has the same form. On the other hand, when ,
namely in the linear case, we have

(6)

These equations indicate that rms of increases in propor-
tional to also in the presence of nonlinearity as long as
dominates the pulse broadening, but the effect of PMD in soliton

Fig. 2. Evolution of h�T i in linear and nonlinear systems with the initial
pulsewidth 2ps. Solid lines represent the results of linear and nonlinear systems
given by (5) and (6), respectively, and dashed lines are the results of numerical
simulation for differentS = 0:43and9:53obtained by averaging over 50 trials.
Dispersion management periodz = 10 km, PMD parameter h�� iz =
0:1 ps/km , andz = 0:2 km. The step size ofz in numerical simulation of
(2) is setz =20.

Fig. 3. Effective PMD in dispersion-managed soliton transmission over
3000 km with several values ofS, obtained by averaging over 50 trials.

h�� iz = 0:1 ps/km .

transmission systems is reduced by compared with linear
systems by the help of nonlinear trap. On the other hand, if the
orthogonally polaraized modes are completely trapped, rms of

is found to increase in proportional to [4].
We demonstrate the suppression of PMD-induced pulse

broadening due to large nonlinearity in strongly disper-
sion-managed soliton transmission. Fig. 2 shows comparison
of the evolution of in linear and nonlinear systems
obtained by the direct numerical simulation of (2) and the one
given by (5) and (6). The analytical result of the Langevin
equation is in good agreement with the numerical result when

. Indeed, (5) is valid especially when the average
dispersion dominantly characterizes the pulse dynamics in a
dispersion-managed line with small. The suppression of
PMD for large is also demonstrated in Fig. 3, where we show
plots of obtained from measured over 3000
km with the assumption that increases in proportional
to as in the case of linear transmission systems. In Fig. 3,
we note that the effective PMD decreases further
as we increase due to large nonlinearity required for the
stationary propagation of a dispersion-managed soliton, in
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a way similar to the case of constant birefringent fibers as
demonstrated in Fig. 1. In the region of , however,
the effect of PMD does not decrease considerably in spite of
large nonlinearity. This is because average nonlinearity over a
dispersion management period does not become large due to
pulse broadening for large. In addition, we observe that the
dispersive waves which originate from the mismatch between
the incident pulse and the exactly stationary pulse in a strongly
dispersion managed line [11] may be another dominating factor
that brings about pulse distortion in addition to PMD. We also
note in Fig. 3 that the effect of PMD is almost irrespective of
the average dispersion regardless of. This is understood by
noting that the transmission distance over 3000 km is already
far beyond the dispersion distance100 km and thus the
nonlinear distance, which indicates that the reduction of PMD
is already effective. The effect of PMD can be reduced by
increasing the map strength, whereas intra-channel nonlinear
interactions increase [7]. Consequently, in dispersion-managed
soliton systems, there seems to exist an optimum value of
which minimizes neighboring pulse to pulse interactions and
simultaneously maximizes the PMD resistance which depends
on the magnitude of PMD.

IV. CONCLUSION

We have demonstrated, both analytically and numerically, the
tolerance of dispersion-managed solitons to PMD in fibers with
constant birefringence as well as random birefringence. In rela-
tively small regime, the effect of PMD is shown to be reduced
considerably by increasing the map strength by the help of en-

hanced nonlinear trap, however the reduction saturates beyond
of about five.
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