178 research outputs found

    Волонтерство как социальный институт

    Full text link
    Работа выполнена при поддержке РГНФ в рамках проекта №14-03-00072

    Development of two new sets of PCR primers for eDNA metabarcoding of brittle stars (Echinodermata, Ophiuroidea)

    Get PDF
    汲んだ水から深海生物の種類を判別 --世界初「クモヒトデメタバーコーティング」技術を開発--. 京都大学プレスリリース.Brittle stars (class Ophiuroidea) are marine invertebrates comprising approximately 2, 100 extant species, and are considered to constitute the most diverse taxon of the phylum Echinodermata. As a non-invasive method for monitoring biodiversity, we developed two new sets of PCR primers for metabarcoding environmental DNA (eDNA) from brittle stars. The new primer sets were designed to amplify 2 short regions of the mitochondrial 16S rRNA gene, comprising a conserved region (111–115 bp, 112 bp on average; named “16SOph1”) and a hyper-variable region (180–195 bp, 185 bp on average; named “16SOph2”) displaying interspecific variation. The performance of the primers was tested using eDNA obtained from two sources: a) rearing water of an 2.5 or 170 L aquarium tanks containing 15 brittle star species and b) from natural seawater collected around Misaki, the Pacific coast of central Japan, at depths ranging from shallow (2 m) to deep (> 200 m) sea. To build a reference library, we obtained 16S rRNA sequences of brittle star specimens collected from around Misaki and from similar depths in Japan, and sequences registered in International Nucleotide Sequence Database Collaboration. As a result of comparison of the obtained eDNA sequences with the reference library 37 (including cryptic species) and 26 brittle star species were detected with certain identities by 16SOph1 and 16SOph2 analyses, respectively. In shallow water, the number of species and reads other than the brittle stars detected with 16SOph1 was less than 10% of the total number. On the other hand, the number of brittle star species and reads detected with 16SOph2 was less than half of the total number, and the number of detected non-brittle star metazoan species ranged from 20 to 46 species across 6 to 8 phyla (only the reads at the “Tank” were less than 0.001%). The number of non-brittle star species and reads at 80 m was less than 10% with both of the primer sets. These findings suggest that 16SOph1 is specific to the brittle star and 16SOph2 is suitable for a variety of marine metazoans. It appears, however, that further optimization of primer sequences would still be necessary to avoid possible PCR dropouts from eDNA extracts. Moreover, a detailed elucidation of the brittle star fauna in the examined area, and the accurate identification of brittle star species in the current DNA databank is required

    Studi Sistem Akustik Pada Gereja Katolik Santa Maria Tak Bercela Surabaya

    Get PDF
    The church is a building that has an image of God\u27s glory so that through space design elements, sacred atmosphere can formone through acoustics. The church has an unique acoustic because the church has two activities, namely speech and music. Santa Maria Tak Bercela Catholic Church Surabaya adjacent to Santa Clara School Surabaya, which at certain hours of the atmosphere will be very crowded church. With the help of Sound Level Meter, the background noise is known and the power of the sound source at this church. Reverberation time is calculated by manually sabine and computerize using program Autodeks Ecotect Analysis 2011. Having in mindthe results of the calculation of reverberation time in the field was 0.79-0.88 seconds, the church should be optimized with the goal of achieving the optimum reverberation time is 1. 4 seconds and the sound proofing leaks, by using materials such as insulation yumen board, glasswoll, acrylic, curtains, glass in sealant, rubber on the doors and closing the door hole

    Environmental DNA preserved in marine sediment for detecting jellyfish blooms after a tsunami

    Get PDF
    堆積物の環境DNAで探る過去の出来事 --津波直後のクラゲ大発生を検知--. 京都大学プレスリリース. 2021-08-23.Environmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence

    Environmental detection of eumycetoma pathogens using multiplex real-time PCR for soil DNA in Sennar State, Sudan

    Get PDF
    Background: Mycetoma is a chronic disease affecting the skin and subcutaneous tissue endemic in the tropical and subtropical regions. Several bacteria and fungi can cause mycetoma, but fungal mycetoma (eumycetoma) is challenging because the treatment requires a combination of a long-term antifungal agent and surgery. Although the transmission route has not yet been elucidated, infection from the soil is a leading hypothesis. However, there are few soil investigation studies, and the geographical distribution of mycetoma pathogens is not well documented. Here, we used multiplex real-time PCR technology to identify three fungal species from soil samples. Methods: In total, 64 DNA samples were extracted from soil collected in seven villages in an endemic area in Sennar State, Sudan, in 2019. Primers and fluorescent probes specifically targeting the ribosomal DNA of Madurella mycetomatis, Falciformispora senegalensis, and F. tompkinsii were designed. Results: Multiplex real-time PCR was performed and identified the major pathogen, M. mycetomatis that existed in most sites (95%). In addition, two other pathogens were identified from some sites. This is the first report on the use of this technique for identifying the eumycetoma causative microorganisms. Conclusions: This study demonstrated that soil DNA investigation can elucidate the risk area of mycetoma-causative agents. The results will contribute to the design of prevention measures, and further large-scale studies may be effective in understanding the natural habitats of mycetoma pathogens.</p

    Environmental detection of eumycetoma pathogens using multiplex real-time PCR for soil DNA in Sennar State, Sudan

    Get PDF
    Background: Mycetoma is a chronic disease affecting the skin and subcutaneous tissue endemic in the tropical and subtropical regions. Several bacteria and fungi can cause mycetoma, but fungal mycetoma (eumycetoma) is challenging because the treatment requires a combination of a long-term antifungal agent and surgery. Although the transmission route has not yet been elucidated, infection from the soil is a leading hypothesis. However, there are few soil investigation studies, and the geographical distribution of mycetoma pathogens is not well documented. Here, we used multiplex real-time PCR technology to identify three fungal species from soil samples. Methods: In total, 64 DNA samples were extracted from soil collected in seven villages in an endemic area in Sennar State, Sudan, in 2019. Primers and fluorescent probes specifically targeting the ribosomal DNA of Madurella mycetomatis, Falciformispora senegalensis, and F. tompkinsii were designed. Results: Multiplex real-time PCR was performed and identified the major pathogen, M. mycetomatis that existed in most sites (95%). In addition, two other pathogens were identified from some sites. This is the first report on the use of this technique for identifying the eumycetoma causative microorganisms. Conclusions: This study demonstrated that soil DNA investigation can elucidate the risk area of mycetoma-causative agents. The results will contribute to the design of prevention measures, and further large-scale studies may be effective in understanding the natural habitats of mycetoma pathogens.</p

    Estimation of Fish Biomass Using Environmental DNA

    Get PDF
    Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems
    corecore