529 research outputs found

    Preliminary study: Comparison of antioxidant activity of cannabidiol (CBD) and α-tocopherol added to refined olive and sunflower oils

    Get PDF
    This study evaluates the antioxidant activity of cannabidiol (CBD), added to model systems of refined olive (ROO) and sunflower (SO) oils, by measuring the peroxide value, oxidative stability index (OSI), electron spin resonance (ESR) forced oxidation, and DPPH• assays. Free acidity, a parameter of hydrolytic rancidity, was also examined. CBD was compared using the same analytical scheme with α-tocopherol. CBD, compared to α-tocopherol, showed a higher scavenging capacity, measured by DPPH• assay, but not better oxidative stability (OSI) of the oily systems considered. In particular, α-tocopherol (0.5%) showed an antioxidant activity only in SO, registered by an increase of more than 30% of the OSI (from 4.15 ± 0.07 to 6.28 ± 0.11 h). By ESR-forced oxidation assay, the concentration of free radicals (μM) in ROO decreased from 83.33 ± 4.56 to 11.23 ± 0.28 and in SO from 19.21 ± 1.39 to 6.90 ± 0.53 by adding 0.5% α-tocopherol. On the contrary, the addition of 0.5% CBD caused a worsening of the oxidative stability of ROO (from 23.58 ± 0.32 to 17.28 ± 0.18 h) and SO (from 4.93 ± 0.04 to 3.98 ± 0.04 h). Furthermore, 0.5% of CBD did not lower dramatically the concentration of free radicals (μM) as for α-tocopherol, which passed from 76.94 ± 9.04 to 72.25 ± 4.13 in ROO and from 17.91 ± 0.95 to 16.84 ± 0.25 in SO

    Fluctuation diagnostics of the electron self-energy: Origin of the pseudogap physics

    Full text link
    We demonstrate how to identify which physical processes dominate the low-energy spectral functions of correlated electron systems. We obtain an unambiguous classification through an analysis of the equation of motion for the electron self-energy in its charge, spin and particle-particle representations. Our procedure is then employed to clarify the controversial physics responsible for the appearance of the pseudogap in correlated systems. We illustrate our method by examining the attractive and repulsive Hubbard model in two-dimensions. In the latter, spin fluctuations are identified as the origin of the pseudogap, and we also explain why dd-wave pairing fluctuations play a marginal role in suppressing the low-energy spectral weight, independent of their actual strength.Comment: 6 pages, 2 figures + 4 pages supplementar

    FFT for the APE Parallel Computer

    Get PDF
    We present a parallel FFT algorithm for SIMD systems following the `Transpose Algorithm' approach. The method is based on the assignment of the data field onto a 1-dimensional ring of systolic cells. The systolic array can be universally mapped onto any parallel system. In particular for systems with next-neighbour connectivity our method has the potential to improve the efficiency of matrix transposition by use of hyper-systolic communication. We have realized a scalable parallel FFT on the APE100/Quadrics massively parallel computer, where our implementation is part of a 2-dimensional hydrodynamics code for turbulence studies. A possible generalization to 4-dimensional FFT is presented, having in mind QCD applications.Comment: 17 pages, 13 figures, figures include

    Evaluation of Hemp Seed Oils Stability under Accelerated Storage Test

    Get PDF
    The interest in hemp seed oil has recently increased, due to the latest regulations which allow its use as food. Hemp seed oil is characterized by a high content of polyunsaturated fatty acids, which are highly prone to oxidation. Accelerated thermal oxidation (60 °C, 18 days) has been applied to nine types of cold-pressed hemp seed oils to monitor the evolution of the samples during oxidative deterioration. The results showed that the only determinations of primary (peroxide value) and secondary (TBARs) oxidation products did not allow a sufficient or correct evaluation of the oxidative changes of hemp seed oils during storage. In fact, samples at the end of the test were primarily characterized by a high presence of oxidation volatile compounds and a significant decrease of antioxidants. Several volatiles identified before the accelerated storage, such as the predominant α-pinene and β-pinene, gradually decreased during the accelerated storage period. On the other hand, aldehydes (hexanal, (E)-2-hexenal, heptanal, (E,E)-2,4-hexadienal, (E)-2-heptenal, (E,E)-2,4-heptadienal, (E,Z)-2,4-heptadienal, 2-octenal, nonanal, nonenal, 2,4-nonadienal, (E,E)-2,4-decadienal and 2,4-decadienal), ketones (1-octen-3-one, 3-octen-2-one, (E,E)-3,5-octadien-2-one and 3,5-octadien-2-one), acids (propionic acid, pentanoic acid, hexanoic acid and heptanoic acid) and 2pentyl-furan increased during the accelerated storage, as principal markers of oxidation
    corecore