14 research outputs found

    Hyperfine interactions at lanthanide impurities in Fe

    No full text
    The magnetic hyperfine field and electric-field gradient at isolated lanthanide impurities in an Fe host lattice are calculated from first principles, allowing a qualitative and quantitative understanding of an experimental data set collected over the past 40 years. It is demonstrated that the common local density approximation leads to quantitatively and qualitatively wrong results, while the LDA+U method performs much better. In order to avoid pitfalls inherent to the LDA+U method, a combination of free ion calculations and "constrained density matrix" calculations is proposed and tested. Quantitative results for the exchange field and crystal field parameters are obtained (B-exc=+420 T, B-0(4)=-1000 cm(-1), B-0(6)=-800 cm(-1)), showing in particular how crystal field effects influence the hyperfine fields for the lightest and heaviest lanthanides. The hyperfine fields are shown to be dominated by the 4f orbital contribution, with small corrections due to the spin dipolar and Fermi contact fields. The latter is found to be constant for all lanthanides, a feature that is understood by a modified version of the well-known core polarization mechanism for 3d hyperfine fields. Spin dipolar fields and electric-field gradients have apart from a 4f contribution a surprisingly strong contribution due to the completely filled lanthanide 5p orbitals-the mechanism behind this is explained. The lanthanide 4f spin moment is found to couple antiparallel to the magnetization of the Fe lattice, in agreement with the model of Campbell and Brooks. There is strong evidence for a delocalization-localization transition that is shifted from Ce to at least Pr and maybe further up to Sm. This shift is interpreted in terms of the effective pressure felt by lanthanides in Fe. Implications for resolving ambiguities in the determination of delocalization in pure lanthanide metals under pressure are discussed. For the localized lanthanides, Yb is shown to be divalent in this host lattice, while all others are trivalent (including Eu). The temperature dependence of the hyperfine fields is discussed as well

    Temperature dependence of the electric-field gradient in hcp-Cd from first principles

    No full text
    We determine the temperature dependence of the electric-field gradient in hcp-Cd from first principles. The calculations are based on the ab initio determination of the phonon density of states spectrum of the solid. Using only moderate accuracy requirements, the temperature dependence of the electric-field gradient in hcp-Cd is reasonably well reproduced. The origin of its peculiar T-3/2 dependence is discussed

    The method of invariants applied to the analysis of 57Fe Mössbauer spectra

    No full text

    Ab initio calculation of hyperfine interaction parameters: recent evolutions, recent examples

    No full text
    For some years already, ab initio calculations based on Density Functional Theory (DFT) belong to the toolbox of the field of hyperfine interaction studies. In this paper, the standard ab initio approach is schematically sketched. New features, methods and possibilities that broke through during the past few years are listed, and their relation to the standard approach is explained. All this is illustrated by some highlights of recent ab initio work done by the Nuclear Condensed Matter Group at the K.U.Leuven
    corecore