2 research outputs found

    Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE)

    Get PDF
    Abstract Background: Maternal overweight, obesity, and gestational diabetes (GD) have been negatively associated with offspring development. Further knowledge regarding metabolic and nutritional alterations in these mother and their offspring are warranted. Methods: In an observational cohort study we included 331 pregnant women from Granada, Spain. The mothers were categorized into four groups according to BMI and their GD status; overweight (n:56), obese (n:64), GD (n:79), and healthy normal weight controls (n:132). We assessed maternal growth and nutritional biomarkers at 24 weeks (n = 269), 34 weeks (n = 310) and at delivery (n = 310) and the perinatal characteristics including cord blood biomarkers. Results: Obese and GD mothers had significantly lower weight gain during pregnancy and infant birth weight, waist circumference, and placental weight were higher in the obese group, including a significantly increased prevalence of macrosomia. Except for differences in markers of glucose metabolism (glucose, HbA1c, insulin and uric acid) we found at some measures that overweight and/or obese mothers had lower levels of transferrin saturation, hemoglobin, Vitamin B12 and folate and higher levels of C-reactive protein, erythrocyte sedimentation rate, ferritin, and cortisol. GD mothers had similar differences in hemoglobin and C-reactive protein but higher levels of folate. The latter was seen also in cord blood. Conclusions: We identified several metabolic alterations in overweight, obese and GD mothers compared to controls. Together with the observed differences in infant anthropometrics, these may be important biomarkers in future research regarding the programming of health and disease in children. Trial registration: The trial was registered at clinicaltrials.gov, identifier (NCT01634464). Keywords: Pregnancy, Maternal overweight, Maternal obesity, Gestational diabetes, Offspring, Fetal nutrition, Early programming, Vitamin B12, Folate, Iron status, Glucose metabolis

    Association of maternal weight with FADS and ELOVL genetic variants and fatty acid levels- The PREOBE follow-up.

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the genes encoding the fatty acid desaturase (FADS) and elongase (ELOVL) enzymes affect long-chain polyunsaturated fatty acid (LC-PUFA) production. We aimed to determine if these SNPs are associated with body mass index (BMI) or affect fatty acids (FAs) in pregnant women. Participants (n = 180) from the PREOBE cohort were grouped according to pre-pregnancy BMI: normal-weight (BMI = 18.5-24.9, n = 88) and overweight/obese (BMI≥25, n = 92). Plasma samples were analyzed at 24 weeks of gestation to measure FA levels in the phospholipid fraction. Selected SNPs were genotyped (7 in FADS1, 5 in FADS2, 3 in ELOVL2 and 2 in ELOVL5). Minor allele carriers of rs174545, rs174546, rs174548 and rs174553 (FADS1), and rs1535 and rs174583 (FADS2) were nominally associated with an increased risk of having a BMI≥25. Only for the normal-weight group, minor allele carriers of rs174537, rs174545, rs174546, and rs174553 (FADS1) were negatively associated with AA:DGLA index. Normal-weight women who were minor allele carriers of FADS SNPs had lower levels of AA, AA:DGLA and AA:LA indexes, and higher levels of DGLA, compared to major homozygotes. Among minor allele carriers of FADS2 and ELOVL2 SNPs, overweight/obese women showed higher DHA:EPA index than the normal-weight group; however, they did not present higher DHA concentrations than the normal-weight women. In conclusion, minor allele carriers of FADS SNPs have an increased risk of obesity. Maternal weight changes the effect of genotype on FA levels. Only in the normal-weight group, minor allele carriers of FADS SNPs displayed reduced enzymatic activity and FA levels. This suggests that women with a BMI≥25 are less affected by FADS genetic variants in this regard. In the presence of FADS2 and ELOVL2 SNPs, overweight/obese women showed higher n-3 LC-PUFA production indexes than women with normal weight, but this was not enough to obtain a higher n-3 LC-PUFA concentration
    corecore