32 research outputs found
Analysing Edge Computing Devices for the Deployment of Embedded AI
In recent years, more and more devices are connected to the network, generating an overwhelming amount of data. This term that is booming today is known as the Internet of Things. In order to deal with these data close to the source, the term Edge Computing arises. The main objective is to address the limitations of cloud processing and satisfy the growing demand for applications and services that require low latency, greater efficiency and real-time response capabilities. Furthermore, it is essential to underscore the intrinsic connection between artificial intelligence and edge computing within the context of our study. This integral relationship not only addresses the challenges posed by data proliferation but also propels a transformative wave of innovation, shaping a new era of data processing capabilities at the network’s edge. Edge devices can perform real-time data analysis and make autonomous decisions without relying on constant connectivity to the cloud. This article aims at analysing and comparing Edge Computing devices when artificial intelligence algorithms are deployed on them. To this end, a detailed experiment involving various edge devices, models and metrics is conducted. In addition, we will observe how artificial intelligence accelerators such as Tensor Processing Unit behave. This analysis seeks to respond to the choice of a device that best suits the necessary AI requirements. As a summary, in general terms, the Jetson Nano provides the best performance when only CPU is used. Nevertheless the utilisation of a TPU drastically enhances the results.This work was partially financed by the Basque Government through their Elkartek program (SONETO project, ref. KK-2023/00038)
Pangea: An MLOps Tool for Automatically Generating Infrastructure and Deploying Analytic Pipelines in Edge, Fog and Cloud Layers
Development and operations (DevOps), artificial intelligence (AI), big data and edge–fog–cloud are disruptive technologies that may produce a radical transformation of the industry. Nevertheless, there are still major challenges to efficiently applying them in order to optimise productivity. Some of them are addressed in this article, concretely, with respect to the adequate management of information technology (IT) infrastructures for automated analysis processes in critical fields such as the mining industry. In this area, this paper presents a tool called Pangea aimed at automatically generating suitable execution environments for deploying analytic pipelines. These pipelines are decomposed into various steps to execute each one in the most suitable environment (edge, fog, cloud or on-premise) minimising latency and optimising the use of both hardware and software resources. Pangea is focused in three distinct objectives: (1) generating the required infrastructure if it does not previously exist; (2) provisioning it with the necessary requirements to run the pipelines (i.e., configuring each host operative system and software, install dependencies and download the code to execute); and (3) deploying the pipelines. In order to facilitate the use of the architecture, a representational state transfer application programming interface (REST API) is defined to interact with it. Therefore, in turn, a web client is proposed. Finally, it is worth noting that in addition to the production mode, a local development environment can be generated for testing and benchmarking purposes.This research has been funded in the context of the IlluMINEation project, from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 869379
On demand translation for querying incompletely aligned datasets
More and more users aim at taking advantage of the existing Linked Open Data environment to formulate a query over a dataset and to then try to process the same query over different datasets, one after another, in order to obtain a broader set of answers. However, the heterogeneity of vocabularies used in the datasets on the one side, and the fact that the number of alignments among those datasets is scarce on the other, makes that querying task difficult for them.
Considering this scenario we present in this paper a proposal that allows on demand translations of queries formulated over an original dataset, into queries expressed using the vocabulary of a targeted dataset. Our approach relieves users from knowing the vocabulary used in the targeted datasets and even more it considers situations where alignments do not exist or they are not suitable for the formulated query. Therefore, in order to favour the possibility of getting answers, sometimes there is no guarantee of obtaining a semantically equivalent translation.
The core component of our proposal is a query rewriting model that considers a set of transformation rules devised from a pragmatic point of view. The feasibility of our scheme has been validated with queries defined in well known benchmarks and SPARQL endpoint logs, as the obtained results confirm
Datos abiertos enlazados (LOD) y su implantación en bibliotecas: iniciativas y tecnologías
The web of data is becoming one of the largest global information repositories, thanks to initiatives like LOD (linked open data) that facilitate the standardized publication of open data. The use of this paradigm offers great opportunities for libraries, applying semantic technologies to expedite data management and publication and promoting their connection to other repositories, increasing their presence and impact. In order to ensure the future of libraries in the Web of data, it is necessary to raise awareness among librarians about LOD opportunities and challenges. With this aim, we present the major initiatives in this area, along with the pioneering organizations in the use of linked data in the library domai
PADL: A Modeling and Deployment Language for Advanced Analytical Services
In the smart city context, Big Data analytics plays an important role in processing the
data collected through IoT devices. The analysis of the information gathered by sensors favors the
generation of specific services and systems that not only improve the quality of life of the citizens,
but also optimize the city resources. However, the difficulties of implementing this entire process
in real scenarios are manifold, including the huge amount and heterogeneity of the devices, their
geographical distribution, and the complexity of the necessary IT infrastructures. For this reason,
the main contribution of this paper is the PADL description language, which has been specifically
tailored to assist in the definition and operationalization phases of the machine learning life cycle.
It provides annotations that serve as an abstraction layer from the underlying infrastructure and
technologies, hence facilitating the work of data scientists and engineers. Due to its proficiency in the
operationalization of distributed pipelines over edge, fog, and cloud layers, it is particularly useful
in the complex and heterogeneous environments of smart cities. For this purpose, PADL contains
functionalities for the specification of monitoring, notifications, and actuation capabilities. In addition,
we provide tools that facilitate its adoption in production environments. Finally, we showcase the
usefulness of the language by showing the definition of PADL-compliant analytical pipelines over
two uses cases in a smart city context (flood control and waste management), demonstrating that
its adoption is simple and beneficial for the definition of information and process flows in such
environments.This work was partially supported by the SPRI–Basque Government through their ELKARTEK program
(3KIA project, ref. KK-2020/00049). Aitor Almeida’s participation was supported by the FuturAAL-Ego project
(RTI2018-101045-A-C22) granted by the Spanish Ministry of Science, Innovation and Universities. Javier Del Ser
also acknowledges funding support from the Consolidated Research Group MATHMODE (IT1294-19), granted by
the Department of Education of the Basque Government
Datos abiertos enlazados (LOD) y su implantación en bibliotecas: iniciativas y tecnologías
The web of data is becoming one of the largest global information repositories, thanks to initiatives like LOD (linked open data) that facilitate the standardized publication of open data. The use of this paradigm offers great opportunities for libraries, applying semantic technologies to expedite data management and publication and promoting their connection to other repositories, increasing their presence and impact. In order to ensure the future of libraries in the Web of data, it is necessary to raise awareness among librarians about LOD opportunities and challenges. With this aim, we present the major initiatives in this area, along with the pioneering organizations in the use of linked data in the library domai
Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions
This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated
Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)
The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients
Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
Key Factors Associated With Pulmonary Sequelae in the Follow-Up of Critically Ill COVID-19 Patients
Introduction: Critical COVID-19 survivors have a high risk of respiratory sequelae. Therefore, we aimed to identify key factors associated with altered lung function and CT scan abnormalities at a follow-up visit in a cohort of critical COVID-19 survivors. Methods: Multicenter ambispective observational study in 52 Spanish intensive care units. Up to 1327 PCR-confirmed critical COVID-19 patients had sociodemographic, anthropometric, comorbidity and lifestyle characteristics collected at hospital admission; clinical and biological parameters throughout hospital stay; and, lung function and CT scan at a follow-up visit. Results: The median [p25–p75] time from discharge to follow-up was 3.57 [2.77–4.92] months. Median age was 60 [53–67] years, 27.8% women. The mean (SD) percentage of predicted diffusing lung capacity for carbon monoxide (DLCO) at follow-up was 72.02 (18.33)% predicted, with 66% of patients having DLCO < 80% and 24% having DLCO < 60%. CT scan showed persistent pulmonary infiltrates, fibrotic lesions, and emphysema in 33%, 25% and 6% of patients, respectively. Key variables associated with DLCO < 60% were chronic lung disease (CLD) (OR: 1.86 (1.18–2.92)), duration of invasive mechanical ventilation (IMV) (OR: 1.56 (1.37–1.77)), age (OR [per-1-SD] (95%CI): 1.39 (1.18–1.63)), urea (OR: 1.16 (0.97–1.39)) and estimated glomerular filtration rate at ICU admission (OR: 0.88 (0.73–1.06)). Bacterial pneumonia (1.62 (1.11–2.35)) and duration of ventilation (NIMV (1.23 (1.06–1.42), IMV (1.21 (1.01–1.45)) and prone positioning (1.17 (0.98–1.39)) were associated with fibrotic lesions. Conclusion: Age and CLD, reflecting patients’ baseline vulnerability, and markers of COVID-19 severity, such as duration of IMV and renal failure, were key factors associated with impaired DLCO and CT abnormalities
Incremental SPARQL query processing
The number of linked data sources available on the Web is growing at a rapid rate. Moreover, users are showing an interest for any framework that allows them to obtain answers, for a formulated query, accessing heterogeneous data sources without the need of explicitly specifying the sources to answer the query. Our proposal focus on that interest and its goal is to build a system capable of answering to user queries in an incremental way. Each time a different data source is accessed the previous answer is eventually enriched. Brokering across the data sources is enabled by using source mapping relationships. User queries are rewritten using those mappings in order to obtain translations of the original query across data sources. Semantically equivalent translations are first looked for, but semantically approximated ones are generated if equivalence is not achieved. Well defined metrics are considered to estimate the information loss, if any.Peer reviewe