763 research outputs found

    Diversity textile antenna systems for firefighters

    Get PDF
    Off-body communication systems are valuable to improve the security of rescue workers by allowing them to transmit vital information collected by sensors. As rescue workers often work in indoor environments characterized by many obstructions, non line-of-sight propagation with multipath effects and shadowing compromises the performance of the wireless communication. The reliability is enhanced drastically by the use of diversity techniques. In the measurement campaign presented, the performance of such an off-body diversity system is compared for two antenna configurations: two dual-polarized antennas, versus four circularly polarized antennas. The actual data transmission confirms the marginal difference between the two configurations, suggesting the use of dual-polarized systems for reasons of user convenience and ease of practical implementation

    Group-galaxy correlations in redshift space as a probe of the growth of structure

    Get PDF
    We investigate the use of the cross-correlation between galaxies and galaxy groups to measure redshift-space distortions (RSD) and thus probe the growth rate of cosmological structure. This is compared to the classical approach based on using galaxy auto-correlation. We make use of realistic simulated galaxy catalogues that have been constructed by populating simulated dark matter haloes with galaxies through halo occupation prescriptions. We adapt the classical RSD dispersion model to the case of the group-galaxy cross-correlation function and estimate the RSD parameter β\beta by fitting both the full anisotropic correlation function ξ(rp,π)\xi(r_p,\pi) and its multipole moments. In addition, we define a modified version of the latter statistics by truncating the multipole moments to exclude strongly non-linear distortions at small transverse scales. We fit these three observable quantities in our set of simulated galaxy catalogues and estimate statistical and systematic errors on β\beta for the case of galaxy-galaxy, group-group, and group-galaxy correlation functions. When ignoring off-diagonal elements of the covariance matrix in the fitting, the truncated multipole moments of the group-galaxy cross-correlation function provide the most accurate estimate, with systematic errors below 3% when fitting transverse scales larger than 10Mpc/h10Mpc/h. Including the full data covariance enlarges statistical errors but keep unchanged the level of systematic error. Although statistical errors are generally larger for groups, the use of group-galaxy cross-correlation can potentially allow the reduction of systematics while using simple linear or dispersion models.Comment: 18 pages, 16 figure

    Il "Casalis" e Renato Bordone

    Get PDF

    Indoor off-body wireless communication: static beamforming versus space-time coding

    Get PDF
    The performance of beamforming versus space-time coding using a body-worn textile antenna array is experimentally evaluated for an indoor environment, where a walking rescue worker transmits data in the 2.45 GHz ISM band, relying on a vertical textile four-antenna array integrated into his garment. The two transmission scenarios considered are static beamforming at low-elevation angles and space-time code based transmit diversity. Signals are received by a base station equipped with a horizontal array of four dipole antennas providing spatial receive diversity through maximum-ratio combining. Signal-to-noise ratios, bit error rate characteristics, and signal correlation properties are assessed for both off-body transmission scenarios. Without receiver diversity, the performance of space-time coding is generally better. In case of fourth-order receiver diversity, beamforming is superior in line-of-sight conditions. For non-line-of-sight propagation, the space-time codes perform better as soon as bit error rates are low enough for a reliable data link
    • …
    corecore