943 research outputs found
Investigation of multilayer magnetic domain lattice file
A theoretical and experimental investigation determined that current accessed self structured bubble memory devices have the potential of meeting projected data density and speed requirements. Device concepts analyzed include multilayer ferrimagnetic devices where the top layer contains a domain structure which defines the data location and the second contains the data. Current aperture and permalloy assisted current propagation devices were evaluated. Based on the result of this work more detailed device research was initiated. Detailed theoretical and experimental studies indicate that the difference in strip and threshold between a single bubble in the control layer and a double bubble which would exist in both the control layer and data layer is adequate to allow for detection of data. Detailed detector designs were investigated
Investigation of multilayer magnetic domain lattice file
The feasibility of the self structured multilayered bubble domain memory as a mass memory medium for satellite applications is examined. Theoretical considerations of multilayer bubble supporting materials are presented, in addition to the experimental evaluation of current accessed circuitry for various memory functions. The design, fabrication, and test of four device designs is described, and a recommended memory storage area configuration is presented. Memory functions which were demonstrated include the current accessed propagation of bubble domains and stripe domains, pinning of stripe domain ends, generation of single and double bubbles, generation of arrays of coexisting strip and bubble domains in a single garnet layer, and demonstration of different values of the strip out field for single and double bubbles indicating adequate margins for data detection. All functions necessary to develop a multilayer self structured bubble memory device were demonstrated in individual experiments
Black hole spin inferred from 3:2 epicyclic resonance model of high-frequency quasi-periodic oscillations
Estimations of black hole spin in the three Galactic microquasars GRS
1915+105, GRO J1655-40, and XTE J1550-564 have been carried out based on
spectral and timing X-ray measurements and various theoretical concepts. Among
others, a non-linear resonance between axisymmetric epicyclic oscillation modes
of an accretion disc around a Kerr black hole has been considered as a model
for the observed high-frequency quasi-periodic oscillations (HF QPOs).
Estimates of spin predicted by this model have been derived based on the
geodesic approximation of the accreted fluid motion. Here we assume accretion
flow described by the model of a pressure-supported torus and carry out related
corrections to the mass-spin estimates. We find that for dimensionless black
hole spin a<0.9, the resonant eigenfrequencies are very close to those
calculated for the geodesic motion. Their values slightly grow with increasing
torus thickness. These findings agree well with results of a previous study
carried out in the pseudo-Newtonian approximation. The situation becomes
different for a>0.9, in which case the resonant eigenfrequencies rapidly
decrease as the torus thickness increases. We conclude that the assumed
non-geodesic effects shift the lower limit of the spin, implied for the three
microquasars by the epicyclic model and independently measured masses, from
a~0.7 to a~0.6. Their consideration furthermore confirms compatibility of the
model with the rapid spin of GRS 1915+105 and provides highly testable
predictions of the QPO frequencies. Individual sources with a moderate spin
(a<0.9) should exhibit a smaller spread of the measured 3:2 QPO frequencies
than sources with a near-extreme spin (a~1). This should be further examined
using the large amount of high-resolution data expected to become available
with the next generation of X-ray instruments, such as the proposed Large
Observatory for X-ray Timing (LOFT).Comment: 6 pages, 4 figures, accepted by Astronomy & Astrophysic
Coronal magnetic reconnection driven by CME expansion -- the 2011 June 7 event
Coronal mass ejections (CMEs) erupt and expand in a magnetically structured
solar corona. Various indirect observational pieces of evidence have shown that
the magnetic field of CMEs reconnects with surrounding magnetic fields,
forming, e.g., dimming regions distant from the CME source regions. Analyzing
Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on
2011 June 7, we present the first direct evidence of coronal magnetic
reconnection between the fields of two adjacent ARs during a CME. The
observations are presented jointly with a data-constrained numerical
simulation, demonstrating the formation/intensification of current sheets along
a hyperbolic flux tube (HFT) at the interface between the CME and the
neighbouring AR 11227. Reconnection resulted in the formation of new magnetic
connections between the erupting magnetic structure from AR 11226 and the
neighboring active region AR 11227 about 200 Mm from the eruption site. The
onset of reconnection first becomes apparent in the SDO/AIA images when
filament plasma, originally contained within the erupting flux rope, is
re-directed towards remote areas in AR 11227, tracing the change of large-scale
magnetic connectivity. The location of the coronal reconnection region becomes
bright and directly observable at SDO/AIA wavelengths, owing to the presence of
down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The
high-density plasma around the reconnection region is heated to coronal
temperatures, presumably by slow-mode shocks and Coulomb collisions. These
results provide the first direct observational evidence that CMEs reconnect
with surrounding magnetic structures, leading to a large-scale re-configuration
of the coronal magnetic field.Comment: 12 pages, 12 figure
High Statistics Analysis using Anisotropic Clover Lattices: (IV) Volume Dependence of Light Hadron Masses
The volume dependence of the octet baryon masses and relations among them are
explored with Lattice QCD. Calculations are performed with n_f=2+1 clover
fermion discretization in four lattice volumes, with spatial extent L ~ 2.0,
2.5, 3.0 and 3.9 fm, with an anisotropic lattice spacing of b_s ~ 0.123 fm in
the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion
mass of m_pi ~ 390 MeV. The typical precision of the ground-state baryon mass
determination is ~0.2%, enabling a precise exploration of the volume dependence
of the masses, the Gell-Mann--Okubo mass relation, and of other mass
combinations. A comparison of the volume dependence with the predictions of
heavy baryon chiral perturbation theory is performed in both the SU(2)_L X
SU(2)_R and SU(3)_L X SU(3)_R expansions. Predictions of the three-flavor
expansion for the hadron masses are found to describe the observed volume
dependences reasonably well. Further, the Delta-N-pi axial coupling constant is
extracted from the volume dependence of the nucleon mass in the two-flavor
expansion, with only small modifications in the three-flavor expansion from the
inclusion of kaons and etas. At a given value of m_pi L, the finite-volume
contributions to the nucleon mass are predicted to be significantly smaller at
m_pi ~ 140 MeV than at m_pi ~ 390 MeV due to a coefficient that scales as ~
m_pi^3. This is relevant for the design of future ensembles of lattice
gauge-field configurations. Finally, the volume dependence of the pion and kaon
masses are analyzed with two-flavor and three-flavor chiral perturbation
theory.Comment: 34 pages, 45 figure
The Next-Generation Multimission U.S. Surveillance Radar Network
The U.S. Government operates seven distinct radar networks, providing weather and aircraft surveillance for public weather services, air traffic control, and homeland defense. In this paper, we describe a next-generation multimission phased-array radar (MPAR) concept that could provide enhanced weather and aircraft surveillance services with potentially lower life cycle costs than multiple single-function radar networks. We describe current U.S. national weather and aircraft surveillance radar networks and show that by reducing overlapping airspace coverage, MPAR could reduce the total number of radars required by approximately one-third. A key finding is that weather surveillance requirements dictate the core parameters of a multimission radar—airspace coverage, aperture size, radiated power, and angular resolution. Aircraft surveillance capability can be added to a phased array weather radar at low incremental cost because the agile, electronically steered beam would allow the radar to achieve the much more rapid scan update rates needed for aircraft volume search missions, and additionally to support track modes for individual aircraft targets. We describe an MPAR system design that includes multiple transmit–receive channels and a highly digitized active phased array to generate independently steered beam clusters for weather, aircraft volume search, and aircraft track modes. For each of these modes, we discuss surveillance capability improvements that would be realized relative to today's radars. The Federal Aviation Administration (FAA) has initiated the development of an MPAR “preprototype” that will demonstrate critical subsystem technologies and multimission operational capabilities. Initial subsystem designs have provided a solid basis for estimating MPAR costs for comparison with existing, mechanically scanned operational surveillance radars.United States. Federal Aviation Administration (FA8721-05-C-0002
- …