300 research outputs found

    Vegetation water use based on a thermal and optical remote sensing model in the mediterranean region of Doñana

    Get PDF
    Terrestrial evapotranspiration (ET) is a central process in the climate system, is a major component in the terrestrial water budget, and is responsible for the distribution of water and energy on land surfaces especially in arid and semiarid areas. In order to inform water management decisions especially in scarce water environments, it is important to assess ET vegetation use by differentiating irrigated socio-economic areas and natural ecosystems. The global remote sensing ET product MOD16 has proven to underestimate ET in semiarid regions where ET is very sensitive to soil moisture. The objective of this research was to test whether a modified version of the remote sensing ET model PT-JPL, proven to perform well in drylands at Eddy Covariance flux sites using the land surface temperature as a proxy to the surface moisture status (PT-JPL-thermal), could be up-scaled at regional levels introducing also a new formulation for net radiation from various MODIS products. We applied three methods to track the spatial and temporal characteristics of ET in the World Heritage UNESCO Doñana region: (i) a locally calibrated hydrological model (WATEN), (ii) the PT-JPL-thermal, and (iii) the global remote sensing ET product MOD16. The PT-JPL-thermal showed strong agreement with the WATEN ET in-situ calibrated estimates (ρ = 0.78, ρ1month-lag = 0.94) even though the MOD16 product did not (ρ = 0.48). The PT-JPL-thermal approach has proven to be a robust remote sensing model for detecting ET at a regional level in Mediterranean environments and it requires only air temperature and incoming solar radiation from climatic databases apart from freely available satellite products

    The Aguablanca Ni–(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex

    Get PDF
    The Aguablanca Ni–(Cu) sulfide deposit is hosted by a breccia pipe within a gabbro–diorite pluton. The deposit probably formed due to the disruption of a partially crystallized layered mafic complex at about 12– 19 km depth and the subsequent emplacement of melts and breccias at shallow levels (<2 km). The ore-hosting breccias are interpreted as fragments of an ultramafic cumulate, which were transported to the near surface along with a molten sulfide melt. Phlogopite Ar–Ar ages are 341– 332 Ma in the breccia pipe, and 338–334 Ma in the layered mafic complex, and are similar to recently reported U–Pb ages of the host Aguablanca Stock and other nearby calcalkaline metaluminous intrusions (ca. 350–330 Ma). Ore deposition resulted from the combination of two critical factors, the emplacement of a layered mafic complex deep in the continental crust and the development of small dilational structures along transcrustal strike-slip faults that triggered the forceful intrusion of magmas to shallow levels. The emplacement of basaltic magmas in the lower middle crust was accompanied by major interaction with the host rocks, immiscibility of a sulfide melt, and the formation of a magma chamber with ultramafic cumulates and sulfide melt at the bottom and a vertically zoned mafic to intermediate magmas above. Dismembered bodies of mafic/ultramafic rocks thought to be parts of the complex crop out about 50 km southwest of the deposit in a tectonically uplifted block (Cortegana Igneous Complex, Aracena Massif). Reactivation of Variscan structures that merged at the depth of the mafic complex led to sequential extraction of melts, cumulates, and sulfide magma. Lithogeochemistry and Sr and Nd isotope data of the Aguablanca Stock reflect the mixing from two distinct reservoirs, i.e., an evolved siliciclastic middle-upper continental crust and a primitive tholeiitic melt. Crustal contamination in the deep magma chamber was so intense that orthopyroxene replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical evidence includes enrichment in SiO2 and incompatible elements, and Sr and Nd isotope compositions (87Sr/86Sri 0.708–0.710; 143Nd/144Ndi 0.512–0.513). However, rocks of the Cortegana Igneous Complex have low initial 87Sr/86Sr and high initial 143Nd/144Nd values suggesting contamination by lower crustal rocks. Comparison of the geochemical and geological features of igneous rocks in the Aguablanca deposit and the Cortegana Igneous Complex indicates that, although probably part of the same magmatic system, they are rather different and the rocks of the Cortegana Igneous Complex were not the direct source of the Aguablanca deposit. Crust–magma interaction was a complex process, and the generation of orebodies was controlled by local but highly variable factors. The model for the formation of the Aguablanca deposit presented in this study implies that dense sulfide melts can effectively travel long distances through the continental crust and that dilational zones within compressional belts can effectively focus such melt transport into shallow environments

    Effect of Interface Induced Exchange Fields on Cuprate-Manganite Spin Switches

    Get PDF
    We examine the anomalous inverse spin switch behavior in La0.7_{0.7}Ca0.3_{0.3}MnO3_3 (LCMO)/YBa2_2Cu3_3O7δ_{7-\delta} (YBCO)/LCMO trilayers by combined transport studies and polarized neutron reflectometry. Measuring magnetization profiles and magnetoresistance in an in-plane rotating magnetic field, we prove that, contrary to many accepted theoretical scenarios, the relative orientation between the two LCMO's magnetizations is not sufficient to determine the magnetoresistance. Rather the field dependence of magnetoresistance is explained by the interplay between the applied magnetic field and the (exponential tail of the) induced exchange field in YBCO, the latter originating from the electronic reconstruction at the LCMO/YBCO interfaces.Comment: Total 7 pages,with Supplemental Material. Accepted for publication in Physical Review Letter

    High-grade Endometrial Carcinomas: Morphologic and Immunohistochemical Features, Diagnostic Challenges and Recommendations

    Get PDF
    This review of challenging diagnostic issues concerning high-grade endometrial carcinomas is derived from the authors' review of the literature followed by discussions at the Endometrial Cancer Workshop sponsored by the International Society of Gynecological Pathologists in 2016. Recommendations presented are evidence-based, insofar as this is possible, given that the levels of evidence are weak or moderate due to small sample sizes and nonuniform diagnostic criteria used in many studies. High-grade endometrioid carcinomas include FIGO grade 3 endometrioid carcinomas, serous carcinomas, clear cell carcinomas, undifferentiated carcinomas, and carcinosarcomas. FIGO grade 3 endometrioid carcinoma is diagnosed when an endometrioid carcinoma exhibits >50% solid architecture (excluding squamous areas), or when an architecturally FIGO grade 2 endometrioid carcinoma exhibits marked cytologic atypia, provided that a glandular variant of serous carcinoma has been excluded. The most useful immunohistochemical studies to make the distinction between these 2 histotypes are p53, p16, DNA mismatch repair proteins, PTEN, and ARID1A. Endometrial clear cell carcinomas must display prototypical architectural and cytologic features for diagnosis. Immunohistochemical stains, including, Napsin A and p504s can be used as ancillary diagnostic tools; p53 expression is aberrant in a minority of clear cell carcinomas. Of note, clear cells are found in all types of high-grade endometrial carcinomas, leading to a tendency to overdiagnose clear cell carcinoma. Undifferentiated carcinoma (which when associated with a component of low-grade endometrioid carcinoma is termed "dedifferentiated carcinoma") is composed of sheets of monotonous, typically dyscohesive cells, which can have a rhabdoid appearance; they often exhibit limited expression of cytokeratins and epithelial membrane antigen, are usually negative for PAX8 and hormone receptors, lack membranous e-cadherin and commonly demonstrate loss of expression of DNA mismatch repair proteins and SWI-SNF chromatin remodeling proteins. Carcinosarcomas must show unequivocal morphologic evidence of malignant epithelial and mesenchymal differentiation
    corecore