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Abstract: Terrestrial evapotranspiration (ET) is a central process in the climate system, is a major
component in the terrestrial water budget, and is responsible for the distribution of water and
energy on land surfaces especially in arid and semiarid areas. In order to inform water management
decisions especially in scarce water environments, it is important to assess ET vegetation use by
differentiating irrigated socio-economic areas and natural ecosystems. The global remote sensing
ET product MOD16 has proven to underestimate ET in semiarid regions where ET is very sensitive
to soil moisture. The objective of this research was to test whether a modified version of the remote
sensing ET model PT-JPL, proven to perform well in drylands at Eddy Covariance flux sites using
the land surface temperature as a proxy to the surface moisture status (PT-JPL-thermal), could be
up-scaled at regional levels introducing also a new formulation for net radiation from various MODIS
products. We applied three methods to track the spatial and temporal characteristics of ET in the
World Heritage UNESCO Doñana region: (i) a locally calibrated hydrological model (WATEN), (ii) the
PT-JPL-thermal, and (iii) the global remote sensing ET product MOD16. The PT-JPL-thermal showed
strong agreement with the WATEN ET in-situ calibrated estimates (ρ = 0.78, ρ1month-lag = 0.94) even
though the MOD16 product did not (ρ = 0.48). The PT-JPL-thermal approach has proven to be a
robust remote sensing model for detecting ET at a regional level in Mediterranean environments and
it requires only air temperature and incoming solar radiation from climatic databases apart from
freely available satellite products.

Keywords: evapotranspiration; remote sensing; PT-JPL; WATEN; MOD16; hydrological model;
thermal; Doñana; irrigation; wetland

Remote Sens. 2018, 10, 1105; doi:10.3390/rs10071105 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0002-9645-8571
http://www.mdpi.com/2072-4292/10/7/1105?type=check_update&version=1
http://dx.doi.org/10.3390/rs10071105
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1105 2 of 23

1. Introduction

The global water cycle is changing due to the combined effects of climate change and human
interventions during the 21st century [1]. One of the greatest challenges is keeping water consumption
at sustainable levels, which is more complex due to the increasing population in a context of climate
uncertainty [2,3] and 3.5–4.4 billion people estimated under water scarcity conditions in 2050 [4].
Many regions of the world can expect a combination of increasing temperatures (largely increasing
evaporative demand) and decreasing precipitation patterns, which leads to increased stress on tackling
water demand [5]. A prime example of this is the Mediterranean region, which is consistently projected
as a “hotspot” of drying trends and prolonged water scarcity conditions [6,7].

The Iberian Peninsula is predicted to be among the most affected areas by severe droughts by
the end of the 21st century [8]. In this region, where irrigated agriculture represents over 80% of the
total extracted water [9], land use shifts towards higher market-valued crops represent a major driver
of change, which will markedly increase water withdrawals [10]. In the Guadalquivir basin in Spain,
irrigation water requirements are expected to increase between 15% and 20% by 2050 [11]. This may
cause a redistribution of water between the surface and groundwater [12]. Monitoring the variations
in the hydrological cycle components more closely, among them evapotranspiration (ET), is of major
importance in countries facing intensified drought spills [13,14].

After precipitation, ET is the major component in the terrestrial water budget [15].
Evapotranspiration at specific locations can be estimated by using methods such as lysimeters,
the Bowen-ratio, or Eddy Covariance (EC) [16]. However, ET estimations at large-scales are complex to
achieve due to spatial heterogeneity in the land surface [17–19]. As the only connecting term between
the water cycle and the land surface energy budget [20–22], ET can be estimated by hydrological
models (HMs) relying on the water balance or by land surface models (LSMs) computed through the
mass-transfer equations between the land surface and the atmosphere [23].

Conceptual lumped HMs consider an undivided entity with individual values of input variables
and parameters [24]. Spatially distributed HMs or prognostic LSMs enable ET to be estimated at large
scales in a spatially explicit manner [25]. This type of models requires a priori information on land
use and surface properties, which are not always up-to-date and may be complex for retrieving in
situations of fast land use changes such as new irrigation developments. Diagnostic or historical LSMs
using remote sensing (RS) datasets to prescribe vegetation and other surface variables can provide
spatially distributed fluxes and fast updating on the land surface [26,27]. Diagnostic RS-LSMs need
limited a priori data on soil and vegetation parameters to estimate ET and can rely on remotely sensed
land surface temperature (LST) as a proxy to the surface moisture status [28].

The complexity of RS-based models to retrieve ET depends on the process considered [29,30].
ET can be directly estimated as a residual of the surface energy balance equation or can be based on
potential evapotranspiration adjusted to actual rates using different constraints factors from remote
sensing. The Penman-Monteith (PM) equation [31,32] is the base to compute ET in some global
RS-ET products such as the first widely available ET product MOD16 [33,34] whose main challenge
relies on estimating surface and aerodynamic resistances to the water vapor [35]. Hu et al. [36]
found that MOD16 best performs in temperate and fully humid climates and produces a consistent
underestimation of ET in semiarid regions such as Spain, Portugal, the neighborhood of the Black
Sea and the Caspian Sea, and semiarid climatic zones in the conterminous United States [37].
In these regions and under water stress conditions, ET is very sensitive to soil moisture. In MOD16,
canopy resistance to water vapor relies on vegetation-related RS inputs (e.g., LAI) [38] and stomatal
conductance while soil resistance to water vapor relies on the vapor pressure deficit (VPD) and
relative humidity (RH), which are indicators of water stress [33,34]. The Priestley-Taylor equation [39]
bridges the limitation of estimating these resistances by using an empirical multiplier αPT [40].
The Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model combines the PT-approach with the
reduction of potential ET based on eco-physiological constraints to land-atmosphere water fluxes [41].
With the aim to minimize the need for RH climatic reanalysis data and to improve the performance
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in semiarid regions, García et al. [42] proposed a modification of the PT-JPL model (PT-JPL-thermal
herein) by introducing the LST with a thermal inertia approach as a proxy to the soil moisture status.

This approach has proven to perform well in the drylands under Mediterranean and monsoonal
conditions and to perform better than other RS models as the PM model adapted by Leuning et al. [15].
Although the PT-JPL-thermal model has been benchmarked at EC flux sites [42], it has not been
tested with modelled net radiation or at regional levels. The main objectives of this work were:
(i) to assess whether the RS PT-JPL-thermal model that uses the thermal inertia approach for soil
evaporation can perform similarly to a hydrological model calibrated with in-situ data that requires
soil moisture-associated parameters to retrieve ET, (ii) to compare and assess the ET derived from
the PT-JPL-thermal against the global ET product MOD16, which estimates soil evaporation as a
function of VPD and RH climatic reanalysis, in the Mediterranean region of Doñana including natural
ecosystems (wetland, shrubland, and coniferous forest) and irrigated areas (mixed-irrigated areas and
rice fields).

2. Study Area

The study area presents Mediterranean climate under Atlantic influence with warm and dry
summers and temperate and semi-humid winters. The temperatures range from 24 ◦C on average
in the summertime to 10 ◦C on average in the winter [43]. The average rainfall is about 560 mm of
which more than 80% occurs between October and March. The study area covers the Doñana National
Park (54,251 ha) differentiating between three natural ecosystems: seasonal wetlands, shrublands,
and coniferous forests, which rest over the aquifer Almonte-Marismas, extensive rice fields [44] on the
right and left bank of the Guadalquivir river, and mixed-irrigation croplands established in the ancient
marshes. In particular, the mixed-irrigation BXII converted into arable land in the 1960s [45] is one of
the most-water-intensive irrigated areas in the Guadalquivir River basin with approximately 15,000
hectares and above 6000 m3/ha per year.

The study area is of great international importance. The Doñana National Park is included in
the Ramsar Convention as one of the largest wetlands in Europe [46]. It was designated a World
Heritage Site by UNESCO in 1995 and buffered by a Natural Park, which entered the endangered
Montreux Record of Ramsar sites in 1990 [47]. The high variability of land uses in the Doñana
region, where conflicts between the environment conservation and socio-economic development have
increased [48], makes this region a particularly interesting water-scarcity hot-spot for assessing water
demand on different land uses and water availability conditions (Figure 1).

3. Materials and Methods

3.1. Remote Sensing Dataset

Multiple remote sensing observations were acquired from the Moderate Resolution Imaging
Spectroradiometer (MODIS) using sensors from both Aqua and Terra satellites. Satellite data were
used in combination with in situ meteorological data (air temperature and radiation) as inputs for
the PT-JPL-thermal model. MODIS land products were retrieved from The Earth Observing System
Data and Information System (EOSDIS), which is a core capability in National Aeronautics Space
Administration (NASA) Earth Science Data Systems Program. All the selected MODIS products
(version 5) were acquired at 1 km pixel resolution for the study period between 2003 to 2012. The
temporal resolution of the data sets were: (1) daily for land surface temperature (LST), land emissivity
(εS) and MODIS overpass time from MOD11A1 and MYD11A1, (2) 8-day-composites for land surface
temperature (LST) from MOD11A2 and MYD11A2, (3) 8-day-composites of leaf area index (LAI) and
fraction of photo-synthetically active radiation (fAPAR) from MOD15A2, broadband surface albedo (α)
acquired from MCD43B3, and (4) 16-day-composites of normalized difference vegetation index (NDVI)
retrieved from MOD13A2. To interpolate to daily from 8 and 16 day-composites variables, the same
value was used for the entire period.
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Figure 1. Map of the study area including (i) irrigated areas: mixed-irrigation areas (BXII District and
left bank) and rice fields, (ii) natural ecosystems in the Doñana National Park: wetland, shrubland,
and coniferous forest.

3.2. Meteorological Data

Meteorological data were obtained from the agro-climatic station Lebrija I (36.98◦N, 6.13◦W, https:
//www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/), which is a station site of the Agroclimatic
Information Network of Andalusia (RIAA). This station is controlled by a CR10X data logger with
sensors to measure Tair (Tmax, Tmin, and Tmean), relative humidity RH (RHmax, RHmin, and RHmean),
solar radiation Rs, precipitation P, wind speed and direction, and reference evapotranspiration ETo,
transferred by GSM modems for quality control and data validation [49].

3.3. Remote Sensing ET Model (PT-JPL-Thermal)

The PT-JPL-thermal model is described in García et al. [42], which is a modified version of the
PT-JPL model in Fisher et al. [41] using thermal remote sensing data. In this work, the PT-JPL-thermal
model was spatially distributed over the study area for a 10-year period at a daily time-scale.
Daily estimations provided by the model were further aggregated per month to be comparable to the
other evaluated models’ temporal-scale. The PT-JPL-thermal model retrieves actual evapotranspiration
(ET) in mm/day by estimating actual canopy transpiration (ETc) and soil evaporation (ETs) as two
layers (Equation (1)). The quantity of water intercepted by the canopy was not considered in the
formulation of the model as seen in García et al. [42].

ET = ETc + ETs (1)

Potential crop evapotranspiration ETp is downscaled to actual ET by considering biophysical
limitations from the canopy and the soil. ETp depends on net radiation (Rn) and soil heat flux (G).
G was considered negligible at the daily scale, which was outlined in Fisher et al. [41] for monthly time
steps (see Purdy et al. [50] for further expansion on G). Rn is the sum of longwave (RL) and shortwave

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/
https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/
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radiation (RS) where incoming longwave radiation (R↓Linst
) depends on the air temperature at the time

of the MODIS overpass (TairMODIS−time ) and outgoing R↑Linst
relies on surface emissivity (εS) and LST.

LST, εS and TairMODIS−time were retrieved from daily Aqua MYD11A1 for each pixel, replacing the LST,
εS and TairMODIS−time by Terra MOD11A1 values only in case of no data due to clouds or other factors.
The εS was calculated as the average of the two thermal channels from the MODIS sensor.

Shortwave radiation was calculated based on local shortwave radiation data and broadband
surface albedo from MCD43B3. A conversion factor, J, between instantaneous and daily radiation
variables based on the diurnal sinusoidal course of shortwave and net radiation was used [51].

This specific formulation using MODIS data was expanded from García et al. [52] and
Bisht et al. [53] and to our knowledge it has been formulated herein with these data sources for
the first time. To simplify the comprehension of the model, all the equations and variables used to
retrieve the ET as the combination of canopy transpiration and soil evaporation are detailed in Table 1.

3.3.1. Canopy Transpiration

Potential canopy evapotranspiration ETpc was downscaled to actual ETc by determining
the fraction of the canopy actively transpiring (fg) and considering some reductions to
potential transpiration due to a moisture constraint (fm) and a temperature constraint (ft) for
canopy transpiration.

The green canopy fraction (fg) is the ratio between the photosynthetic active radiation absorbed
by the vegetation cover (fAPAR) acquired from the 8-day-composite MOD15A2, and the photosynthetic
active radiation intercepted (fIPAR), which is estimated as a function of the NDVI acquired from the
16-day-composite MOD13A2 as in Fisher et al. [41]. The plant moisture constraint (fm) considers
a reduction of light utilization for canopy transpiration in response to water stress [41]. The plant
temperature constraint (ft) considers a decrease of canopy transpiration when the temperature differs
from an optimum temperature range. Originally, Topt was calculated individually for every pixel by
selecting the value of air temperature associated with a maximum NDVI and irradiance and minimum
VPD, which is shown in Fisher et al. [41]. García et al. [42] found that this approach led to unrealistic
Topt values in Mediterranean environments, obtaining better results using the Carnegie-Ames-Stanford
Approach model (CASA) [42,54]. In addition, the PT-JPL was not very sensitive to Topt in arid areas
tested by García et al. [42] and, therefore, to avoid calibrations of Topt depending on the site, it was
fixed in 25 ◦C as in other global studies such as Yuan et al. [55] across a wide range of biomes.

3.3.2. Soil Evaporation

Potential soil evaporation ETps was downscaled to actual ETs by applying a soil moisture
constraint ( fsm), which is outlined in García et al. [42]. The soil thermal inertia (TI) can be indicative of
soil moisture content variations [56]. A simple approximation to this concept is the apparent thermal
inertia (ATI) derived from multi-spectral remote sensing images [57,58]. ATI results from combining
the RS surface albedo α, maximum daily land surface temperature oscillations (LSTDay − LSTNight),
and a solar flux correction factor. The formulation of fsm based on ATI in this paper relies on the
minimum and maximum seasonal ATI, respectively. Assuming that maximum ATI values occur at
saturated soil moisture content conditions and that minimum ATI corresponds to the residual soil
moisture content in the soil, fsm would estimate the difference between actual soil moisture content
and field capacity [58]. As the ATI requires both day and night LST, which increased significantly
the number of gaps when using daily data, we assumed that 8-day data can capture well the general
soil moisture dynamics. The daily maximum LSTDay (daily minimum LSTNight) temperature was
estimated for each pixel and 8-day period as the maximum (minimum) value between the day (night)
observations from Terra and Aqua MOD11A2 and MYD11A2.
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Table 1. Equations and variables used to estimate daily values of ET in the PT-JPL-thermal model.
αPT = 1.26 Priestley-Taylor coefficient, ∆ slope of the saturation-to-vapor pressure curve (Pa K−1),
γ psychrometric constant (0.066 kPa C−1), G soil heat flux (Wm−2) negligible at the daily scale as in
Fisher et al. [41], kRn = 0.6 [59], LAI from MOD15A2, σ Stefan-Boltzmann constant (5.67 × 10−8 Wm−2),
c and d constants (0.261 and 7.77 × 10−4 respectively), Tmax and Tmin (◦C) max and min climatic Tair

[60], N (h) time lag between sunrise and sunset (https://www.esrl.noaa.gov/gmd/grad/researchp.
html), d time lag for maximum temperature before sunset (1.86 h), MODIStime from MYD11A1 or
MOD11A1 depending on clouds, c time lag for minimum air temperature after sunrise (−0.17 h),
εS average of emissivity bands 31 and 32, LST from MYD11A1 or MOD11A1 (depending on clouds),
R↓Sday

(MJ/m2/day) climatic data [60], αBSA and αWSA broadband black and white-sky albedo, t (h) time
lag between sunrise time from NOAA and MODIStime, fAPAR fraction of absorbed photosynthetic
active radiation, fIPAR fraction of intercepted photosynthetic active radiation as a function of the NDVI
acquired from MOD13A2 [41], Topt optimum temperature for plant growth (25 ◦C) as in García et al. [42],
Tam daily mean Tair (◦C), (LSTDay − LSTNight) maximum daily LST oscillations from 8-day MYD11A2
and MOD11A2, ϑ latitude, and ϕ solar declination factor.

Variable Description PT-JPL-Thermal Equations Reference

Evapotranspiration ET = ETc + ETs [41]

Canopy Transpiration ETc = ETpc· fg· fm· ft [41]

Potential Canopy Transpiration ETpc = αPT · ∆
∆+γ ·(Rnc − G) [41]

• Net Canopy Radiation Rnc = Rn − Rns
[41]

• Net Soil Radiation Rns = Rn·e(−kRn ·LAI) [59]

• Net Radiation Rn = R↓L − R↑L + R↓S − R↑S = RL + RS
[41]

Instant. In. Longwave Radiation R↓Linst
= σ·(TairMODIS−time + 273.15)4·

[
1−

(
c·e(−d (TairMODIS−time

2))
)]

[61]

Air Temperature at MODIS pass-time TairMODIS−time = (Tmax − Tmin )·sin
(

π·m
N+2·d

)
+ Tmin

[62]

Number of Hours from Tmin until Sunset m = MODIStime −
(

12−
(

N
2

)
+ c
)

[62]

Instant Out. Longwave Radiation R↑Linst
= −εS·σ·LST4 [52]

Daily Shortwave Radiation RSday = R↓Sday
· (1− α) [52]

Albedo α = 0.8 · αBSA + 0.2 · αWSA
[63]

Instant. Shortwave Radiation RSinst =
RSday

J ·
24
N

[51]

Conversion Factor Day-inst J = 2
sin
(

pi·t
N

) [51]

Instantaneous Net Radiation Rninst = RLinst + RSinst

Daily Net Radiation Rnday = Rninst ·J· N
24

[53]

Canopy Transpiration Constraints

• Green Canopy Fraction fg = fAPAR/ f IPAR
[41]

• Plant Moisture Constraint fm =
fAPAR

fAPARmax
[41]

• Plant Temperature Constraint ft = 1.1814/
[(

1 + e0.2·(Topt−10−Tam)
)]

/
[(

1 + e0.3·(−Topt−10+Tam)
)]

[52]

Soil Evaporation ETS = ETps· fsm [41]

Potential Soil Evaporation ETps = αPT · ∆
∆+γ ·(Rns − G) [41]

Soil Evaporation Constraints

• Soil Moisture Constraint fsm = ATI−ATImin
ATImax−ATImin

[42]

Apparent Thermal Inertia ATI = C· 1−α

(LSTDay−LSTNight)
[42]

Solar Flux Correction Factor C = sinϑ·sinϕ·(1− tan2ϑ·tan2 ϕ) + cosϑ·cosϕ·arccos(−tanϑ·tanϕ) [64]

3.4. Hydrological Model WATEN

Developed in Moyano et al. [65], WATEN is a conceptual model that approaches water balances
where streamflow data are not available. The model is calibrated with the energy data to pump the
drainage discharge from an irrigation district to the river and was applied to the mixed-irrigation

https://www.esrl.noaa.gov/gmd/grad/researchp.html
https://www.esrl.noaa.gov/gmd/grad/researchp.html
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BXII from 2002 to 2012. The accuracy of WATEN fitted the ideal Theil’s proportion distribution for
good model performance and reached a correlation coefficient up to ρ = 0.93 and a coefficient of
efficiency e2 = 0.90. WATEN requires climatic, crop-soil, and farm management data and relies on
the water balance (Equation (2)) to solve ET and drainage (D) based on changes in soil moisture (S)
in mm/month.

Considering ∆t = 1 month, we obtain the equation below.

Pi + Ii = ETi + Di + Si − Si−1 (2)

where Pi is the precipitation in month i, Ii is irrigation, Di is drainage, and (Si − Si−1) is soil moisture
variation between one month and the preceding.

To estimate ET, potential crop evapotranspiration ETp is adjusted from reference
evapotranspiration ETo by local basal crop coefficient values and downscaled according to soil
moisture variations. The maximum amount of water retained by the soil and made available to
the plant is characterized by the total available moisture (TAM). When moisture depletion reaches
this value, the plant would not extract any water and transpiration would not occur. The readily
available moisture (RAM) is a fraction of TAM depending on the crop and its development phase.
Soil moisture depletion (SMD ∼= TAM − S), which is the amount of water depleted from the root zone,
facilitates the estimation of losses and gain estimates of the water budget [32]. This is expressed as
Si − Si−1 = −(SMDi − SMDi−1). When the depletion level is below RAM, ET reaches potential
levels. For a moisture depletion between RAM and TAM levels, ET is reduced from potential levels
(Equation (3)).

ET =

{
ETP, SMD ≤ RAM
ETP· TAM−SMD

TAM−RAM , SMD > RAM
(3)

Considering the fraction of effective precipitation (RP) and irrigation (RI), drainage accounts for
the fractions of precipitation P·(1− RP) and irrigation I·(1− RI) not-efficiently used by the soil-canopy
unit. When the soil presents the maximum moisture it can hold, SMD = 0, the water that is supplied
by irrigation or precipitation is drained (Equation (4)).

D =

{
P·(1− RP) + I·(1− RI), SMD > 0

P·(1− RP) + I·(1− RI) + P·RP + I·RI − SMDi−1 − ET, SMD = 0
(4)

Soil moisture depletion SMD is calculated in Equation (5) with a maximum SMD = TAM.

SMD =

{
SMDi−1 + ET − P·RP − I·RI , 0 < SMD < TAM
TAM, SMD > TAM

(5)

The model was calibrated through the energy consumption required to pump the drainage
discharge from the study area (BXII) to the river. The calibration period covered a decade of study
from 2002 to 2012 with a Nash–Sutcliffe coefficient e2 = 0.90 between observed and estimated drainage
discharge data.

3.5. Remote Sensing Global Evapotranspiration Product MOD16 ET

MOD16 ET is a globally available algorithm (freely accessible from Available online: http://ntsg.
umt.edu/project/mod16 (accessed on 8 May 2012).) for ET retrieval based on the Penman-Monteith
equation [31], Firstly introduced by Mu et al. [33] based on a revision of the algorithm proposed by
Cleugh et al. [66], the algorithm resolves, during the day-time, the crop and surface resistances to
transpiration and evaporation flows to the atmosphere. In Mu et al. [34], the algorithm was updated
by considering the ET contribution during night-time and other improvements on the vegetation
cover fraction, stomatal conductance, or aerodynamic conductance. The logic behind the MOD16 ET

http://ntsg.umt.edu/project/mod16
http://ntsg.umt.edu/project/mod16
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algorithm utilizes daily air pressure, air temperature, humidity, and radiation as meteorological data
with remote sensing data derived from MODIS including land cover, LAI, fAPAR, and α. In this study,
the monthly ET product has been used.

3.6. Validation of the PT-JPL-Thermal ET

RS ET estimations derived from (i) the 2-sources PT-JPL-thermal model and (ii) the global 2-sources
ET product MOD16 were compared against WATEN ET calibrated data in the mixed-irrigation BXII
from 2003 to 2012 where WATEN outputs were available. Monthly ET estimations as well as the
average seasonal (monthly) and inter-annual ET dynamics were evaluated and compared. In this work,
ET has been expressed in mm/day because of the importance in this region of irrigation in which ET is
usually given per mm/day. This value is calculated by dividing monthly ET by the number of days in
the month.

Table 2 illustrates the inputs and parameters required to derive ET from the three methods.
Potential ETp data series from PT-JPL-thermal and MOD16 ET were further compared against ETp at
the agro-climatic station at (BXII), Lebrija I.

Table 2. Model inputs and parameters required for ET retrieval from WATEN, PT-JPL-thermal,
and MOD16. TAM total available moisture (mm/month), RAM readily available moisture (mm/month),
RI fraction of effective irrigation, RP fraction of effective precipitation, ET evapotranspiration
(mm/month), D drainage (mm/month), SMD soil moisture depletion (mm/month), LAI leaf area
index, fAPAR fraction of photosynthetically active radiation, α albedo, LST land surface temperature,
εS emissivity, EVI enhanced vegetation index, and GMAO Global Modelling and Assimilation Office.

WATEN PT-JPL-Thermal MOD16

Inputs

• RS Data LAI, fAPAR (MOD15A2) LAI, fAPAR (MOD15A2)

Broadband α (MCD43B3) Broadband α
(MOD43C1)

NDVI (MOD13A2) EVI (MOD13A2)
Day LST, εS, TairMODIS−time

(MOD11A1, MYD11A1) Land cover (MOD12Q1)

LSTDay, LSTNight
(MOD11A2, MYD11A2)

• Climatic Data Precipitation P Average maximum and minimum air
temperature Tair

Meteorological
reanalysis data GMAO:

Reference ETo
Incoming daily shortwave

radiation R↓Sday

• Air temperature
• Air pressure
• Humidity
• Radiation

• Other in-situ Data Sowing/harvesting dates Biome-type-look-up-table
Crop growth stages

Crop coefficients
Irrigation I

Calibrated Parameters TAM, RAM, RI, RP

Outputs ET, D, SMD ET ET

The performance of the PT-JPL-thermal and MOD16 ET models was evaluated through the
Pearson correlation coefficient ρ (Equation (6)), p probability value, the Mean Absolute Error (MAE)
(Equation (7)), the bias (Equation (8)), and the Root Mean Square error (RMSE) (Equation (9)).

ρx,y =
cov(x, y)

σy·σx
(6)

MAE =
1
n

n

∑
i = 1

|yi − xi| (7)



Remote Sens. 2018, 10, 1105 9 of 23

bias =
1
n

n

∑
i = 1

(yi − xi) (8)

RMSE =

√
1
n
·

n

∑
i = 1

(yi − xi)
2 (9)

where cov (x,y) is the covariance between the observed ET values xi and the estimated RS ET values,
yi; σx and σy are the standard deviation of the variables, and (yi − xi) the estimated RS model error.

The coefficient of efficiency (e2) [67] was used to determine the relative magnitude of the residual
variance compared to the measured data variance [68] (Equation (10)).

e2 = 1− ∑n
i = 1(yi − xi)

2

∑n
i = 1(xi − x)2 (10)

In addition, Theil’s inequality decomposition was useful for breaking down the error in monthly
ET rates into three different characteristic sources: bias (um) in which large values indicate a systematic
error, variance (us) in which large values indicate large difference in the fluctuation of the series,
and covariance (uc) in which low values indicate unsystematic errors due to randomness [69,70]
(Equation (11)).

1 = um + us + uc

= n·(y−x)2

∑n
i = 1(yi−xi)

2 +
(n−1)·(σy−σx)

2

∑n
i = 1(yi−xi)

2

+
2(n−1)·(1−ρx,y)·σy ·σx

∑n
i = 1(yi−xi)

2

(11)

According to Pindyck and Rubinfeld [69], Theil’s inequality components distribution is close to
the optimal value when the sum of all three components follows the ideal distribution um ∼= us ∼= 0
and uc ∼= 1. Otherwise, undesirable occurrences would point to a revision of the evaluated model.

3.7. Assessment of PT-JPL-Thermal vs. MOD16 ET in the Doñana Region

We compared the PT-JPL-thermal ET estimations against the globally available product MOD16 ET
series over the Mediterranean region of Doñana (number of pairs np = 152,640, i.e., 1272 region-pixels
in the 120 month-period from 2003 to 2012). ET annual values, inter-annual variability, and seasonality
patterns (monthly) were assessed and compared for different land use (in Figure 1) on a pixel basis.

Multi-year average ET values normalized to the total average in the region (ET/ETav) were used
to assess the agreement between models in the spatial distribution of the ET estimates. Multi-year
average ET values were also compared in terms of land use (np = 906 in the irrigated areas, np = 366 in
the natural ecosystems).

Seasonal (monthly) and inter-annual patterns of ET over the study period were compared on a
pixel basis by correlation coefficients (np = 120 i.e., 120 months per pixel, and np = 10 i.e., 10 years per
pixel), which were further partitioned and analyzed by the individual month and land cover class.

4. Results

4.1. Validation of the PT-JPL-Thermal ET

The daily PT-JPL-thermal ET was aggregated into monthly estimates (mm/day) and compared
against the in-situ calibrated hydrological model WATEN ET and MOD16 ET.

Annual ET values are shown in Figure 2c. The 10-year ET average from 2003 to 2012 was
739 mm for PT-JPL-thermal and 352 mm for MOD16, which represented a 7% overestimation and 49%
underestimation compared to WATEN (ET = 691 mm), respectively. The ET time series resulting for the
period of 2003 to 2012 is shown in Figure 2a. The average seasonality derived from the PT-JPL-thermal
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ET and WATEN ET, which is shown in Figure 2b, presented maximum ET values in June while MOD16
ET maximum values were in April/May. The PT-JPL-thermal ET showed a high agreement with
WATEN results after a lag of one month.
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Figure 2. (a) Monthly ET (mm/day), (b) average ET seasonality (mm/day), (c) annual ET (mm/year)
derived from WATEN, PT-JPL-thermal, and MOD16 in the mixed-irrigation BXII for the period between
2003 to 2012.

Figure 3 shows the relationship between the PT-JPL-thermal and MOD16 monthly average
ET values versus WATEN ET over the study period between 2003 to 2012. Table 3 illustrates the
performance of the models based on the estimators proposed (ρ coefficient, e2, MAE, bias, and RMSE)
for monthly and annual average values. In general, the PT-JPL-thermal showed higher performance
than MOD16. The PT-JPL-thermal vs. WATEN correlation remarkably increased when considering the
one-month lag between both models although MOD16 accuracy was even lower in this case.
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Table 3. The Pearson correlation coefficient ρ significant * at p < 0.001, the Nash-Sutcliffe e2, the Mean
Absolute Error (MAE), the bias, and the Root Mean Square error (RMSE) for the monthly ET and
average climatology ET derived from the PT-JPL-thermal and MOD16 vs. WATEN.

Monthly ET ρ e2
MAE Bias RMSE

(mm/day)

PT-JPL-t vs. WATEN 0.78 * 0.59 0.74 0.13 0.9
PT-JPL-t vs. WATEN1month-lag 0.94 * 0.87 0.39 0.13 0.51
MOD16 vs. WATEN 0.48 * −0.27 1.17 −0.92 1.58
MOD16 vs. WATEN1month-lag 0.18 * −0.42 1.22 −0.94 1.67

ET average seasonality

PT-JPL-t vs. WATEN 0.83 * 0.67 0.68 0.13 0.78
PT-JPL-t vs. WATEN1month-lag 0.99 * 0.96 0.25 0.13 0.29
MOD16 vs. WATEN 0.65 * −0.28 1.15 −0.92 1.54
MOD16 vs. WATEN1month-lag 0.17 * −0.43 1.18 −0.92 1.63

The Theil’s inequality components distribution of the ET estimations derived from the
PT-JPL-thermal and MOD16 ET models versus WATEN ET is illustrated in Table 4.

Table 4. Theil’s inequality components distribution for monthly ET derived from PT-JPL-thermal and
MOD16 vs. WATEN. Ideal Theil’s inequality components distribution: um ∼= us ∼= 0 and uc ∼= 1.

Monthly ET Theil’s Inequality Components

um us uc

PT-JPL-thermal vs. WATEN 0.02 0.02 0.96
MOD16 vs. WATEN 0.34 0.48 0.18

Potential evapotranspiration ETp from MOD16 did, however, significantly correlate with the
on-site ETp at the agro-climatic station Lebrija I (ρ = 0.98, bias = 0.2 mm/day) and ETp derived
from the PT-JPL-thermal also resulted in high correspondence with the ETp at Lebrija I (ρ = 0.99,
bias = 0.17 mm/day) (Figure 4).Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 23 
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Figure 4. (a) Monthly ETp (mm/day) derived from the agro-climatic station Lebrija I versus ETp from
the PT-JPL-thermal and MOD16 over 2003 to 2012. (b) Average monthly correlation of ETp (mm/day)
from PT-JPL-thermal and MOD16 against ETp at Lebrija I.
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4.2. Assessment of PT-JPL-Thermal vs. MOD16 ET in the Doñana Region

From 2003 to 2012, the average evapotranspiration ETav in the region including irrigated areas
and natural ecosystems was estimated in 657 mm/year and 379 mm/year by the PT-JPL-thermal
and MOD16, respectively. MOD16 reached 58% of the PT-JPL-thermal estimated ETav. The monthly
average ET in the region, which is shown in Figure 5a, showed a low correlation (ρ ∼= 0.48) and a large
bias = −23.6 mm between models for a number of pairs np = 120 months. At an annual time-scale for a
np = 10 years, the agreement between models increased (ρ ∼= 0.94, p < 0.001) and the bias remained
large (see Figure 5b).
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Figure 5. (a) Region-averaged ETav (mm/day), (b) region-averaged ETav (mm/year) derived from the
PT-JPL-thermal and MOD16 in the study region (irrigated areas plus natural ecosystems) from 2003 to 2012.

In the Doñana region, MOD16 showed a systematic negative bias with respect to the
PT-JPL-thermal estimation for all the land cover classes. In addition, the timing of the peak intra-annual
ET values did not coincide between models (Figure 6). The mixed-irrigation lands shown in Figure 6a,b
presented maximum ET values in the summer (June to August) for the PT-JPL-thermal and spring
(April to May) for MOD16. The rice fields presented maximum ET values from July to August for both
the PT-JPL-thermal and MOD16 (Figure 6c). In the natural ecosystems, the PT-JPL-thermal showed
maximum ET values in May for the wetland (Figure 6d), in June for the shrubland (Figure 6e), and in
July for the coniferous forest (Figure 6f) while MOD16 detected maximum ET values in April for the
three natural ecosystems.

The spatial patterns of the normalized ET values (ET/ETav) in Figure 7 showed high agreement
between models in which both depict the areas with higher and lower ET rates accordingly except for
the wetland. Both models identified the higher normalized ET values in the rice fields and coniferous
forests, and identified ET values close to the region average ETav in the mixed-irrigation areas and
shrublands. However, a significant disagreement between both models was found in the ET for the
wetland. It resulted well above and below the ETav in the region in the estimations derived from the
PT-JPL-thermal and MOD16, respectively.

The scatterplots in Figure 8a,b show the relationship between the multi-year daily average
ET estimations derived from the PT-JPL-thermal and MOD16 over the period from 2003 to 2012,
which differentiate by irrigated areas and natural ecosystems. The correlation was found significant in
the irrigated areas with ρ = 0.74 (p < 0.001) and a bias = −0.73 mm/day. In contrast, the correlation
values were low in the natural ecosystems with ρ = 0.17 (p < 0.01) and a bias = −0.90 mm/day except
for the shrubland, which showed a correlation value ρ = 0.68 (p < 0.001) and a bias of −0.59 mm/day.
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Figure 9a,b show the temporal correlation values between model estimations at seasonal (months)
and inter-annual scales. Higher correlation values were found in the inter-annual ET dynamics
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Figure 9. Temporal correlation between PT-JPL-thermal and MOD16 (a) seasonal (np = 120, 120 months
per pixel), (b) inter-annual (np = 10, 10 years per pixel).

The scatterplots in Figure 10 show the relationships between the PT-JPL-thermal and MOD16
ET estimations for all the land covers grouped for each month (np = 12,720 i.e., 1272 pixels in
10 years). Significantly higher correlation values were found in the summer months (i.e., July, August,
and September) than in the period from October to March while the rest of the months did not show
any significant correlation.
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This information is complemented by Figure 11a,b, which show specific correlation values for
each month and land cover class.
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A high significant correlation was found in the irrigated areas during the months of maximum
water demand (Figure 11a). In the natural ecosystems, a non-significant correlation was found
(Figure 11b). Particularly for the wetland, the correlation coefficient was ρ = 0.07 with p = 0.25. For the
coniferous forests, the correlation coefficient was ρ = −0.04 with p = 0.86. However, a significant
correlation was observed in the shrubland during the spring and summer months (ρ > 0.7).
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5. Discussion

5.1. Validation of the PT-JPL-Thermal ET

The ET derived from the PT-JPL-thermal showed, for all the estimators proposed (Table 3), a better
performance than the estimated ET from MOD16 in which the high bias obtained indicates a significant
underestimation of ET rates. Moreover, significant differences were observed in the ET dynamics
between models with non-coincident timing of the peak annual values.

The PT-JPL-thermal ET dynamics at a monthly scale (Table 3) showed satisfactory agreement
with WATEN ET and better results with the WATEN one-month lag. WATEN is a finite differences
model run in one-month discrete time intervals whose inputs data may induce a lag in its calculation.
Additionally, due to in-field irrigation data not available for modeling, WATEN uses water transfer
data to the reservoir that stores the water to be applied as irrigation in the BXII [65]. All this introduces
uncertainty regarding the time scale. The amount of variance and the e2 coefficient indicate that the
PT-JPL-thermal model is able to accurately capture the ET dynamics. However, MOD16 e2 negative
values suggest a high variance in the residuals which, together with the high values of the calculated
errors, indicate a low capability for reproducing the WATEN ET dynamics. In addition, the Theil’s
distribution components of the ET estimations (Table 4) obtained with the PT-JPL-thermal were close
to ideal. With a low bias, there is well-represented variance and non-systematic residual errors in the
ET estimations. For MOD16, the Theil’s inequality components distribution showed a poor model
performance under our Mediterranean conditions.

When considering the average seasonality in the ET dynamics (Table 3), the PT-JPL-thermal
estimates showed better results than the ET dynamics at a monthly scale with a higher amount
of variance explained and smaller errors. On the other hand, the WATEN ET seasonality was not
accurately represented by MOD16, which showed a similar e2 coefficient and error values than those
obtained at a monthly scale over the whole study period.

Since potential ET values estimated by Penman-Monteith (used in MOD16) and Priestley-Taylor
(used in the PT-JPL-thermal) were similar (Figure 4), it could be assumed that differences between
meteorological data sets used in the two RS models were negligible. This points out to the downscaling
process from potential to actual ET as the source of disagreement, i.e., the use of the VPD (by MOD16)
instead of the thermal approach (by the PT-JPL-thermal) to downscale to ET. With regard to semiarid
irrigated areas, high values of VPD may reflect the surrounding arid conditions but do not take
into account the real values of water availability [42]. Similar conclusions were achieved by
Cicuéndez et al. [71] when comparing MODIS GPP with EC-derived GPP showing the importance of
water availability apart from VPD. In addition, MOD16 considers the surface of the soil covered by
water to be zero when RH is less than 70%. RH records were below 70% over the irrigation season from
2003 to 2012 at the agro-climatic station Lebrija I and, in consequence, MOD16 assumed the wet surface
fraction as non-existent, which led to an underestimation of ET. Likewise, Biggs et al. [38] found the
evaporative fraction from the irrigated cotton (the major cultivated crop in the mixed-irrigation BXII)
to be underestimated in 67%. The significant correlation between the PT-JPL-thermal and WATEN ET
estimations proved that the use of the thermal inertia concept as a proxy indicator of moisture status
together with the re-formulation of the outgoing longwave radiation makes it possible to reproduce
the dynamics of ET under our Mediterranean conditions in a more accurate manner than using the
VPD alone.

5.2. Assessment of PT-JPL-Thermal vs. MOD16 ET in the Doñana Region

In the whole Doñana region, MOD16 estimations were also significantly lower than the
PT-JPL-thermal ET values (Figure 5). Yet, a high agreement between models’ ET estimation was
found in the whole region inter-annual dynamics (Figure 5b) and at a pixel level (Figure 9b) with
ρ values around 0.8 in most of the pixels. As previously found by Mu et al. [72], although VPD
alone may fail to capture the seasonality of water stress in some areas (Figure 9a), the inter-annual
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variability of water stress could be captured by VPD alone in most areas (Figure 9b), which indicated
the adaptation of this approach for inter-annual global studies [72].

The PT-JPL-thermal ET estimations reasonably approached documented ET rates in the region
per land cover class. The mixed-irrigation areas were found to evapotranspirate 4–5 mm/day in the
summertime by using the PT-JPL-thermal approach (Figure 6a,b) in accordance with the on-site
calibrated WATEN ET estimations in the mixed-irrigation BXII. In the rice fields, the irrigation
supply is documented to be 6.3 mm/day on average in a five-month crop-cycle [73], which is
reasonably approached by the PT-JPL-thermal ET estimations (Figure 6c). Previous studies [74]
in Mediterranean-climate wetlands showed similar ET average values than those estimated by
the PT-JPL-thermal from May to October (i.e., 6 mm/day with σ = 1.9 mm/day vs. 4 mm/day),
which indicates that MOD16 may be underestimating evaporative fluxes (Figure 6d). Penatti et al. [75]
obtained similar results in the world’s largest wetland (Pantanal) with a significant ET underestimation
after winter and spring rainfall-periods. For the shrubland, (Figure 6e) MOD16 may underestimate ET
due to a land use characterized as poorly vegetated surfaces, which is seen in previous findings in the
Central Great Plains of the United Sates [37]. Although MOD16 has been documented to overestimate
ET in forested areas over the Northeast Asia monsoon region [36,76], it was found to underestimate ET
for coniferous forests under Mediterranean conditions as well (Figure 6f).

Intra-annual dynamics derived from the PT-JPL-thermal ET coincided with on-site irrigation
management and natural ecosystems patterns in the region, while MOD16 ET presented some
inconsistencies. The two mixed-irrigation areas (BXII and left bank) showed maximum MOD16
ET values in April contrary to the irrigation-patterns in the region (June to August), which were more
accurately identified by the PT-JPL-thermal approach (Figure 6a,b). For the rice fields, both MOD16
and the PT-JPL-thermal identified maximum ET values in July and August (Figure 6c) according to
the rice fields management in the region, which involves a five-month cultivation-cycle from May
to September after which plots are drained and rice is harvested in October [73]. In the natural
ecosystems, maximum PT-JPL-thermal ET fluxes were observed when the evaporative demand from
the atmosphere ETp was high and when water was available and easily accessible. The PT-JPL-thermal
was able to capture the natural ecosystems different ET patterns depending on their capability to
access water. Therefore, the wetland ET dynamics were accurately captured (Figure 6d), showing
the highest ET fluxes in April-May when water is available after rainfall and vegetation sprouts [77].
Our results match ET intra-annual dynamics previously documented by Drexler et al. [74] in a similar
Mediterranean-climate wetland in the Sacramento-San Joaquin Delta in California. For the shrubland
(Figure 6e), maximum rates were observed later in the spring (i.e., around June) coincident with the
spring green-up period, which is supported by deep infiltration of winter and early spring precipitation,
which was previously observed by Nagler et al. [78] in semiarid shrublands. In the coniferous forest,
(Figure 6f) maximum ET values occurred later in the summer (i.e., July–August), which coincided
with maximum ETp values and showed their root capability to access deeper soil moisture layers [79].
On the contrary, MOD16 showed the maximum ET values in April and the lowest ET values in July for
the three ecosystems equally since this model relies on large-scale meteorological variables to estimate
ET and is not able to capture ecosystems differences. In addition, the lowest ET values identified by
MOD16 in July indicate the low capability of this model to assess ET fluxes in dry atmospheres with
adequate soil moisture availability [33]. Since MOD16 bases the soil evaporation on RH and VPD alone,
it does not take into account the availability of water in deep layers accessible for the shrublands’ and
forests’ roots during part of the summer. This is especially important in the Doñana region because
of the presence of the aquifer Almonte-Marismas on which the region rests, which assures water
availability for some natural vegetation.

The ET spatial patterns derived from both model estimations clearly depict the land use
distribution in the region with a significant agreement between models except in the wetland (Figure 7)
where MOD16 ET values were lower than the average values in the region while the PT-JPL-thermal ET
values were higher. MOD16 uses a land cover map for parameterization and, therefore, a differentiation
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of land uses was expected. The fact that the land use map does not include a wetland class may partially
explain the low ET rates in this area. In addition, the RH criterion used in MOD16 [34] results in an
erroneous elimination of the surface water cover fraction from April to October in the study region
(RH below 70%). However, the PT-JPL-thermal is able to capture the distinct moisture dynamics
among land cover classes accurately, which produces spatially consistent values within land uses and
identifies large differences among them (Figure 7). This indicates that the physical concept of thermal
inertia is applicable to different patterns of moisture availability such as areas with free water surfaces,
irrigated crops, and natural vegetation extracting the water from deep layers.

Within land uses, the correlation of the multi-year average ET between the models at the
pixel level was relatively high (ρ = 0.74) in the irrigated areas (Figure 8a) while, in the natural
ecosystems, the agreement was much lower (ρ = 0.17) (Figure 8b). In the irrigated areas, despite
the ET underestimation by MOD16, both methods seem to differentiate pixels with more and less
evaporation accordingly (Figure 8a). However, the two models do not coincide in identifying the
pixels with higher and lower ET values in the natural ecosystems especially in the wetland (Figure 8b).
The availability of water for natural ecosystems due to the underlying Almonte-Marismas aquifer
might be better captured by the thermal inertia approach used by the PT-JPL-thermal than with
the HR and VPD approach used by MOD16. In addition, higher correlation values (ρ > 0.80) were
found in the months of maximum water demand and high evapotranspiration from July to September
(Figure 10). In particular, the rice fields and mixed-irrigation left bank showed the highest agreement
in these months (Figure 11) in contrast to the natural ecosystems (except for the shrubland). A possible
explanation is that the land cover product used by MOD16 to constrain ET values depending on
land use is correctly assigned to the shrublands but fails in the wetland (classified as grassland) and
coniferous forest (classified as permanent wetland and grassland).

6. Conclusions

We compared two RS evapotranspiration models in natural ecosystems and irrigated lands within
the UNESCO protected Doñana Mediterranean region from 2003 to 2012. The intensification of human
activity in the surroundings protected areas jeopardizes the effectiveness of these areas for preventing
the degradation of natural ecosystems. RS-based evapotranspiration models provide a valuable tool
for assessing human pressures and the risk of natural ecosystems collapse. We validated the ET
estimates obtained from the modified PT-JPL model (PT-JPL-thermal) that introduces land surface
temperature (LST) with a thermal inertia approach as a proxy to the soil moisture status against the
on-site calibrated hydrological model WATEN and compared inter and intra-annual ET patterns with
the globally available product MOD16 ET. The PT-JPL-thermal was found to reasonably reproduce the
ET dynamics under our Mediterranean conditions (ρ = 0.78, ρ1-month lag = 0.94) in contrast to MOD16 ET
estimates, which pointed to poor model performance in the region. We found that MOD16 would allow
us (i) to easily identify land uses with the lowest and largest water use and (ii) to assess inter-annual
variability of ET in water-limited regions. However, the large negative bias (58% underestimation)
found on MOD16 ET estimations in the evaluated land uses (irrigated areas plus natural ecosystems:
wetland, shrubland, coniferous forest) would not allow MOD16 to approach the ET quantification
under water-limited conditions. The PT-JPL-thermal reasonably approached ET rates in the region,
revealing well-differentiated and coherent spatio-temporal patterns among the evaluated land uses.
This study has proven that the use of the thermal inertia concept as a proxy indicator to soil moisture
status, together with the re-formulation of the outgoing longwave radiation, is capable of reproducing
ET at a regional level in semiarid environments. This requires only air temperature and incoming solar
radiation from climatic databases apart from standard satellites and products freely available for ET
estimations. In addition, this study highlights the potentiality to estimate ET of a simpler model less
vulnerable to the uncertainties of multiple types of forcing data in comparison to more theoretically
accurate models that require complex parameters difficult to characterize globally.
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