457 research outputs found

    Portable Flux Tower Deployments Field Campaign Report

    Get PDF
    Contents Acronyms and Abbreviations...................................................................... iii 1.0 Summary ....................................................... 1 2.0 Results ........................................... 1 3.0 Publications and References ................................................. 2 4.0 Lessons Learned ....................................................................

    Color Variability of the Blazar AO 0235+16

    Full text link
    Multicolor (UBVRIJHK) observations of the blazar AO 0235+16 are analyzed. The light curves were compiled at the Turin Observatory from literature data and the results of observations obtained in the framework of the WEBT program (http://www.to.astro/blazars/webt/). The color variability of the blazar was studied in eight time intervals with a sufficient number of multicolor optical observations; JHK data are available for only one of these. The spectral energy distribution (SED) of the variable component remained constant within each interval, but varied strongly from one interval to another. After correction for dust absorption, the SED can be represented by a power law in all cases, providing evidence for a synchrotron nature of the variable component. We show that the variability at both optical and IR wavelengths is associated with the same variable source.Comment: 11 pages, 9 figures, 4 tables, accepted for publication in Astronomy Report

    The Importance of Accounting for Landscape Position When Investigating Grasslands: A Multidisciplinary Characterisation of a California Coastal Grassland

    Get PDF
    Grasslands are one of the most common land-cover types, providing important ecosystem services globally, yet few studies have examined grassland critical-zone functioning throughout hillslopes. This study characterised a coastal grassland over a small hillslope at Point Reyes National Seashore, California, using multidisciplinary techniques, combining remotely-sensed, geophysical, plant, and soil measurements. Clustering techniques delineated the study area into four landscape zones, up-, mid-, and down-slope, and a bordering riparian ecotone, which had distinct environmental properties that varied spatially across the site, with depth, and time. Soil moisture increased with depth and down slope towards a bordering riparian zone, and co-varied with soil CO2 flux rates both spatially and temporally. This highlighted three distinct controls of soil moisture on soil respiration: CO2 fluxes were inhibited by high moisture content in the down-slope during the wet winter months, and converged across landscape positions in the dry summer months, while also displaying post-rain pulses. The normalised difference vegetation index (NDVI) ranged from 0.32 (September)–0.80 (April) and correlated positively with soil moisture and aboveground biomass, moving down slope. Yet, NDVI, aboveground biomass, and soil moisture were not correlated to soil organic carbon (SOC) content (0.4%–4.5%), which was highest in the mid-slope. The SOC content may instead be linked to shifts in dominant grassland species and their rhizosphere properties with landscape position. This multidisciplinary characterisation highlighted significant heterogeneity in grassland properties with landscape position, and demonstrated an approach that could be used to characterise other critical-zone environments on hillslopes

    Diverse soil carbon dynamics expressed at the molecular level

    Get PDF
    The stability and potential vulnerability of soil organic matter (SOM) to global change remains incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and sub-alpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally-defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change

    A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands

    Get PDF
    Wetlands are the largest global natural methane (CH4) source, and emissions between 50 and 70° N latitude contribute 10–30% to this source. Predictive capability of land models for northern wetland CH4 emissions is still low due to limited site measurements, strong spatial and temporal variability in emissions, and complex hydrological and biogeochemical dynamics. To explore this issue, we compare wetland CH4 emission predictions from the Community Land Model 4.5 (CLM4.5-BGC) with siteto regional-scale observations. A comparison of the CH4 fluxes with eddy flux data highlighted needed changes to the model’s estimate of aerenchyma area, which we implemented and tested. The model modification substantially reduced biases in CH4 emissions when compared with CarbonTracker CH4 predictions. CLM4.5 CH4 emission predictions agree well with growing season (May–September) CarbonTracker Alaskan regional-level CH4 predictions and sitelevel observations. However, CLM4.5 underestimated CH4 emissions in the cold season (October–April). The monthly atmospheric CH4 mole fraction enhancements due to wetland emissions are also assessed using the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model coupled with daily emissions from CLM4.5 and compared with aircraft CH4 mole fraction measurements from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) campaign. Both the tower and aircraft analyses confirm the underestimate of cold-season CH4 emissions by CLM4.5. The greatest uncertainties in predicting the seasonal CH4 cycle are from the wetland extent, coldseason CH4 production and CH4 transport processes. We recommend more cold-season experimental studies in highlatitude systems, which could improve the understanding and parameterization of ecosystem structure and function during this period. Predicted CH4 emissions remain uncertain, but we show here that benchmarking against observations across spatial scales can inform model structural and parameter improvements
    • …
    corecore