53 research outputs found

    Toward a simulation approach for alkene ring-closing metathesis : scope and limitations of a model for RCM

    Get PDF
    A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of di-Et diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate consts. do not agree with exptl. studies in the literature. However, by fixing the values of important rate consts. and restricting the concn. ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concn. can be simulated accurately and the effect of precatalyst loading can be anticipated. Progress has also been made toward applying the model to precatalyst evaluation, but further modifications to the model are necessary to achieve much broader aims

    Pentacoordinate Ruthenium(II) Catecholthiolate and Mercaptophenolate Catalysts for Olefin Metathesis: Anionic Ligand Exchange and Ease of Initiation

    No full text
    The investigations disclosed offer insight regarding several key features of Ru-based catecholthiolate olefin metathesis catalysts. Factors influencing the facility with which the two anionic ligands undergo exchange and those that affect the rates of catalyst release are elucidated by examination of more than a dozen new complexes. These studies shed light on how different chelating groups can influence Ru–S bond strength and, as a result, the facility of catecholthiolate rotation. The trans influence series ether < ester ≈ iodide < amine ≈ thioether ≈ olefin < isonitrile ≈ phosphite has been established through X-ray structural analysis and shown to correlate well with the barrier for catecholthiolate rotation (trans effect) determined by variable-temperature NMR experiments and computational studies (DFT). It is found that, apart from electronic factors, chelate geometry has a more notable effect on the rate of catalyst release (five- vs six-membered chelate ring and mono- vs bidentate ligand). Polytopal processes involving pentacoordinate Ru­(II) carbene complexes are shown to be distinct from previously reported fluxional events that involve tetracoordinate species and which are capable of causing diminished polymer syndiotacticity. Ru mercaptophenolate complexes have been synthesized and isolated as a single diastereomer (O–C trans to the NHC). This latter set of species promotes representative olefin metathesis reactions readily and gives <i>Z</i> selectivity levels that are higher than those when the corresponding catecholate systems are used, but less so in comparison to catecholthiolate complexes. A rationale for variations in stereoselectivity is presented

    Pentacoordinate Ruthenium(II) Catecholthiolate and Mercaptophenolate Catalysts for Olefin Metathesis: Anionic Ligand Exchange and Ease of Initiation

    No full text
    The investigations disclosed offer insight regarding several key features of Ru-based catecholthiolate olefin metathesis catalysts. Factors influencing the facility with which the two anionic ligands undergo exchange and those that affect the rates of catalyst release are elucidated by examination of more than a dozen new complexes. These studies shed light on how different chelating groups can influence Ru–S bond strength and, as a result, the facility of catecholthiolate rotation. The trans influence series ether < ester ≈ iodide < amine ≈ thioether ≈ olefin < isonitrile ≈ phosphite has been established through X-ray structural analysis and shown to correlate well with the barrier for catecholthiolate rotation (trans effect) determined by variable-temperature NMR experiments and computational studies (DFT). It is found that, apart from electronic factors, chelate geometry has a more notable effect on the rate of catalyst release (five- vs six-membered chelate ring and mono- vs bidentate ligand). Polytopal processes involving pentacoordinate Ru­(II) carbene complexes are shown to be distinct from previously reported fluxional events that involve tetracoordinate species and which are capable of causing diminished polymer syndiotacticity. Ru mercaptophenolate complexes have been synthesized and isolated as a single diastereomer (O–C trans to the NHC). This latter set of species promotes representative olefin metathesis reactions readily and gives <i>Z</i> selectivity levels that are higher than those when the corresponding catecholate systems are used, but less so in comparison to catecholthiolate complexes. A rationale for variations in stereoselectivity is presented
    • …
    corecore