18 research outputs found

    Assessing the impact of a combined analysis of four common low-risk genetic variants on autism risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism is a complex disorder characterized by deficits involving communication, social interaction, and repetitive and restrictive patterns of behavior. Twin studies have shown that autism is strongly heritable, suggesting a strong genetic component. In other disease states with a complex etiology, such as type 2 diabetes, cancer and cardiovascular disease, combined analysis of multiple genetic variants in a genetic score has helped to identify individuals at high risk of disease. Genetic scores are designed to test for association of genetic markers with disease.</p> <p>Method</p> <p>The accumulation of multiple risk alleles markedly increases the risk of being affected, and compared with studying polymorphisms individually, it improves the identification of subgroups of individuals at greater risk. In the present study, we show that this approach can be applied to autism by specifically looking at a high-risk population of children who have siblings with autism. A two-sample study design and the generation of a genetic score using multiple independent genes were used to assess the risk of autism in a high-risk population.</p> <p>Results</p> <p>In both samples, odds ratios (ORs) increased significantly as a function of the number of risk alleles, with a genetic score of 8 being associated with an OR of 5.54 (95% confidence interval [CI] 2.45 to 12.49). The sensitivities and specificities for each genetic score were similar in both analyses, and the resultant area under the receiver operating characteristic curves were identical (0.59).</p> <p>Conclusions</p> <p>These results suggest that the accumulation of multiple risk alleles in a genetic score is a useful strategy for assessing the risk of autism in siblings of affected individuals, and may be better than studying single polymorphisms for identifying subgroups of individuals with significantly greater risk.</p

    Visual Objectification in Films: Towards a New AI Task for Video Interpretation

    Full text link
    In film gender studies, the concept of 'male gaze' refers to the way the characters are portrayed on-screen as objects of desire rather than subjects. In this article, we introduce a novel video-interpretation task, to detect character objectification in films. The purpose is to reveal and quantify the usage of complex temporal patterns operated in cinema to produce the cognitive perception of objectification. We introduce the ObyGaze12 dataset, made of 1914 movie clips densely annotated by experts for objectification concepts identified in film studies and psychology. We evaluate recent vision models, show the feasibility of the task and where the challenges remain with concept bottleneck models. Our new dataset and code are made available to the community.Comment: 12 pages, 3 figures, 2 table

    SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation

    Get PDF
    Sperm differentiation requires unique transcriptional regulation and chromatin remodeling after meiosis to ensure proper compaction and protection of the paternal genome. Abnormal sperm chromatin remodeling can induce sperm DNA damage, embryo lethality and male infertility, yet, little is known about the factors which regulate this process. Deficiency in Sly, a mouse Y chromosome-encoded gene expressed only in postmeiotic male germ cells, has been shown to result in the deregulation of hundreds of sex chromosome-encoded genes associated with multiple sperm differentiation defects and subsequent male infertility. The underlying mechanism remained, to date, unknown. Here, we show that SLY binds to the promoter of sex chromosome-encoded and autosomal genes highly expressed postmeiotically and involved in chromatin regulation. Specifically, we demonstrate that Sly knockdown directly induces the deregulation of sex chromosome-encoded H2A variants and of the H3K79 methyltransferase DOT1L. The modifications prompted by loss of Sly alter the postmeiotic chromatin structure and ultimately result in abnormal sperm chromatin remodeling with negative consequences on the sperm genome integrity. Altogether our results show that SLY is a regulator of sperm chromatin remodeling. Finally we identified that SMRT/N-CoR repressor complex is involved in gene regulation during sperm differentiation since members of this complex, in particular TBL1XR1, interact with SLY in postmeiotic male germ cells.This work was supported by Inserm (Institut National de la Sante et de la Recherche Medicale), the Agence Nationale de la Recherche program ANR-12–JSV2-0005–01 (to JC), Labex ‘Who am I?’(ANR-11- LABX-0071 under program ANR-11-IDEX-0005-01) and a Marie Curie fellowship FP7-PEOPLE-2010-IEF-273143 (to JC

    Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells

    Get PDF
    International audienceAbstractBackground During meiosis, the X and Y chromosomes are transcriptionally silenced. The persistence of repressive chromatin marks on the sex chromatin after meiosis initially led to the assumption that XY gene silencing persists to some extent in spermatids. Considering the many reports of XY-linked genes expressed and needed in the post-meiotic phase of mouse spermatogenesis, it is still unclear whether or not the mouse sex chromatin is a repressive or permissive environment, after meiosis.Results To determine the transcriptional and chromatin state of the sex chromosomes after meiosis, we re-analyzed ten ChIP-Seq datasets performed on mouse round spermatids and four RNA-seq datasets from male germ cells purified at different stages of spermatogenesis. For this, we used the last version of the genome (mm10/GRCm38) and included reads that map to several genomic locations in order to properly interpret the high proportion of sex chromosome-encoded multicopy genes. Our study shows that coverage of active epigenetic marks H3K4me3 and Kcr is similar on the sex chromosomes and on autosomes. The post-meiotic sex chromatin nevertheless differs from autosomal chromatin in its enrichment in H3K9me3 and its depletion in H3K27me3 and H4 acetylation. We also identified a posttranslational modification, H3K27ac, which specifically accumulates on the Y chromosome. In parallel, we found that the X and Y chromosomes are enriched in genes expressed post-meiotically and display a higher proportion of spermatid-specific genes compared to autosomes. Finally, we observed that portions of chromosome 14 and of the sex chromosomes share specific features, such as enrichment in H3K9me3 and the presence of multicopy genes that are specifically expressed in round spermatids, suggesting that parts of chromosome 14 are under the same evolutionary constraints than the sex chromosomes.ConclusionsBased on our expression and epigenomic studies, we conclude that, after meiosis, the mouse sex chromosomes are no longer silenced but are nevertheless regulated differently than autosomes and accumulate different chromatin marks. We propose that post-meiotic selective constraints are at the basis of the enrichment of spermatid-specific genes and of the peculiar chromatin composition of the sex chromosomes and of parts of chromosome 14

    MOESM13 of Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells

    No full text
    Additional file 13. a RPKM threshold determination. Reads were mapped to Ensembl Genes (in blue) and to intergenic regions (in red). By comparing the expression levels of exons and intergenic regions, the intersection of the density plots was used to determine the threshold value to consider a gene as expressed (in our study= 0.22). b The true number of expressed genes in each bin (black) was estimated from the observed numbers for Ensembl genes (blue, same as a) by multiplication of the latter by the false discovery rate. This estimate was converted to cumulative amount, and the false negative rate was estimated as a function of expression level using the formula described in [48]. c. Bins were converted to cumulative amounts of genes expressed above the expression levels for genes (cum_genes; blue) and controls (cum_background; red). A false discovery rate fdr (green) was calculated at each expression level as described in [48]

    Association of REL polymorphisms and outcome of patients with septic shock

    Get PDF
    International audienceBackground: cRel, a subunit of NF‑κB, is implicated in the inflammatory response observed in autoimmune disease. Hence, knocked‑out mice for cRel had a significantly higher mortality, providing new and important functions of cRel in the physiopathology of septic shock. Whether genetic variants in the human REL gene are associated with severity of septic shock is unknown. Methods: We genotyped a population of 1040 ICU patients with septic shock and 855 ICU controls for two known polymorphisms of REL; REL rs842647 and REL rs13031237. Outcome of patients according to the presence of REL variant alleles was compared. Results: The distribution of REL variant alleles was not significantly different between patients and controls. Among the septic shock group, REL rs13031237*T minor allele was not associated with worse outcome. In contrast, REL rs842647*G minor allele was significantly associated with more multi‑organ failure and early death [OR 1.4; 95 % CI (1.02–1.8)]. Conclusion: In a large ICU population, we report a significant clinical association between a variation in the human REL gene and severity and mortality of septic shock, suggesting for the first time a new insight into the role of cRel in response to infection in humans

    Battle of the Sex Chromosomes: Competition between X and Y Chromosome-Encoded Proteins for Partner Interaction and Chromatin Occupancy Drives Multicopy Gene Expression and Evolution in Muroid Rodents

    No full text
    International audienceAbstract Transmission distorters (TDs) are genetic elements that favor their own transmission to the detriments of others. Slx/Slxl1 (Sycp3-like-X-linked and Slx-like1) and Sly (Sycp3-like-Y-linked) are TDs, which have been coamplified on the X and Y chromosomes of Mus species. They are involved in an intragenomic conflict in which each favors its own transmission, resulting in sex ratio distortion of the progeny when Slx/Slxl1 versus Sly copy number is unbalanced. They are specifically expressed in male postmeiotic gametes (spermatids) and have opposite effects on gene expression: Sly knockdown leads to the upregulation of hundreds of spermatid-expressed genes, whereas Slx/Slxl1-deficiency downregulates them. When both Slx/Slxl1 and Sly are knocked down, sex ratio distortion and gene deregulation are corrected. Slx/Slxl1 and Sly are, therefore, in competition but the molecular mechanism remains unknown. By comparing their chromatin-binding profiles and protein partners, we show that SLX/SLXL1 and SLY proteins compete for interaction with H3K4me3-reader SSTY1 (Spermiogenesis-specific-transcript-on-the-Y1) at the promoter of thousands of genes to drive their expression, and that the opposite effect they have on gene expression is mediated by different abilities to recruit SMRT/N-Cor transcriptional complex. Their target genes are predominantly spermatid-specific multicopy genes encoded by the sex chromosomes and the autosomal Speer/Takusan. Many of them have coamplified with not only Slx/Slxl1/Sly but also Ssty during muroid rodent evolution. Overall, we identify Ssty as a key element of the X versus Y intragenomic conflict, which may have influenced gene content and hybrid sterility beyond Mus lineage since Ssty amplification on the Y predated that of Slx/Slxl1/Sly

    VNtyper enables accurate alignment-free genotyping of MUC1 coding VNTR using short-read sequencing data in autosomal dominant tubulointerstitial kidney disease

    No full text
    Summary: The human genome comprises approximately 3% of tandem repeats with variable length (VNTR), a few of which have been linked to human rare diseases. Autosomal dominant tubulointerstitial kidney disease—MUC1 (ADTKD-MUC1) is caused by specific frameshift variants in the coding VNTR of the MUC1 gene. Calling variants from VNTR using short-read sequencing (SRS) is challenging due to poor read mappability. We developed a computational pipeline, VNtyper, for reliable detection of MUC1 VNTR pathogenic variants and demonstrated its clinical utility in two distinct cohorts: (1) a historical cohort including 108 families with ADTKD and (2) a replication naive cohort comprising 2,910 patients previously tested on a panel of genes involved in monogenic renal diseases. In the historical cohort all cases known to carry pathogenic MUC1 variants were re-identified, and a new 25bp-frameshift insertion in an additional mislaid family was detected. In the replication cohort, we discovered and validated 30 new patients
    corecore