53 research outputs found

    Interaction phenomena in hemocyanins

    Get PDF

    Eradicating cancer cells: struggle with a chameleon

    Get PDF
    Eradication of cancer stem cells to abrogate tumor growth is a new treatment modality. However, like normal cells cancer cells show plasticity. Differentiated tumor stem cells can acquire stem cell properties when they gain access to the stem cell niche. This indicates that eradicating of stem cells (emptying of the niche) alone will not lead to eradication of the tumor. Treatment should be directed to cancer stem cells ànd more mature cancer cells

    Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG

    Get PDF
    Cancer stem cells (CSCs) have been identified as the source of tumor growth and disease recurrence. Eradication of CSCs is thus essential to achieve durable responses, but CSCs are resistant to current anti-tumor therapies. Novel therapeutic approaches that specifically target CSCs will, therefore, be crucial to improve patient outcome. Immunotherapies, which boost the body’s own immune system to eliminate cancerous cells, could be an alternative approach to target CSCs. Vaccines of dendritic cells (DCs) loaded with tumor antigens can evoke highly specific anti-tumor T cell responses. Importantly, DC vaccination also promotes immunological memory formation, paving the way for long-term cancer control. Here, we propose a DC vaccination that specifically targets CSCs. DCs loaded with NANOG peptides, a protein required for maintaining stem cell properties, could evoke a potent anti-tumor immune response against CSCs. We hypothesize that the resulting immunological memory will also control newly formed CSCs, thereby preventing disease recurrence

    The European antibody network's practical guide to finding and validating suitable antibodies for research

    Get PDF
    [EN]Antibodies are widely exploited as research/diagnostic tools and therapeutics. Despite providing exciting research opportunities, the multitude of available antibodies also offers a bewildering array of choice. Importantly, not all companies comply with the highest standards, and thus many reagents fail basic validation tests. The responsibility for antibodies being fit for purpose rests, surprisingly, with their user. This paper condenses the extensive experience of the European Monoclonal Antibody Network to help researchers identify antibodies specific for their target antigen. A stepwise strategy is provided for prioritising antibodies and making informed decisions regarding further essential validation requirements. Web-based antibody validation guides provide practical approaches for testing antibody activity and specificity. We aim to enable researchers with little or no prior experience of antibody characterization to understand how to determine the suitability of their antibody for its intended purpose, enabling both time and cost effective generation of high quality antibody-based data fit for publication.SIOur research has been supported by funding from Cancer Research UK (Program A10702 to A.H.B) and Bloodwise (Program 13047 to A.H.B). The research was supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Center based at Oxford University Hospitals NHS Trust and University of Oxford. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. Grant No 310/6 from the Deutsche Forschungsgemeinschaft to F.K.-N. Grants from the Instituto de Salud Carlos III (PI14/00703, PN de I+D+I 2013-2016) and the CSIC (201320E109 and 201420E109) to L.K. laboratory. Grants of the Spanish Ministry of Health (Fondo de Investigaciones Sanitarias, PI10/01039), Department of Education of Castilla and León Regional Government (Grant# LE007A10–2) and Mutua Madrileña Foundation (Basic research grants 2012) to J.I.R.B. This work was supported by a grant from the Dutch government to the Netherlands Institute for Regenerative Medicine (NIRM, grant No. FES0908)

    The Tetraspanin Protein CD37 Regulates IgA Responses and Anti-Fungal Immunity

    Get PDF
    Immunoglobulin A (IgA) secretion by plasma cells in the immune system is critical for protecting the host from environmental and microbial infections. However, the molecular mechanisms underlying the generation of IgA+ plasma cells remain poorly understood. Here, we report that the B cell–expressed tetraspanin CD37 inhibits IgA immune responses in vivo. CD37-deficient (CD37−/−) mice exhibit a 15-fold increased level of IgA in serum and significantly elevated numbers of IgA+ plasma cells in spleen, mucosal-associated lymphoid tissue, as well as bone marrow. Analyses of bone marrow chimeric mice revealed that CD37–deficiency on B cells was directly responsible for the increased IgA production. We identified high local interleukin-6 (IL-6) production in germinal centers of CD37−/− mice after immunization. Notably, neutralizing IL-6 in vivo reversed the increased IgA response in CD37−/− mice. To demonstrate the importance of CD37—which can associate with the pattern-recognition receptor dectin-1—in immunity to infection, CD37−/− mice were exposed to Candida albicans. We report that CD37−/− mice are evidently better protected from infection than wild-type (WT) mice, which was accompanied by increased IL-6 levels and C. albicans–specific IgA antibodies. Importantly, adoptive transfer of CD37−/− serum mediated protection in WT mice and the underlying mechanism involved direct neutralization of fungal cells by IgA. Taken together, tetraspanin protein CD37 inhibits IgA responses and regulates the anti-fungal immune response
    corecore