591 research outputs found

    Rab3D is critical for secretory granule maturation in PC12 cells.

    Get PDF
    Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs

    mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition

    Get PDF
    Unc-51 Like Kinase 1 (ULK1) is a critical regulator of the biogenesis of autophagosomes, the central component of the catabolic macroautophagy pathway. Regulation of ULK1 activity is dependent upon several phosphorylation events acting to repress or activate the enzymatic function of this protein. Phosphorylation of Ser758 ULK1 has been linked to repression of autophagosome biogenesis and was thought to be exclusively dependent upon mTOR complex 1 kinase activity. In this study, a novel regulation of Ser758 ULK1 phosphorylation is reported following prolonged inhibition of the Parkinson's disease linked protein Leucine Rich Repeat Kinase 2 (LRRK2). Here, modulation of Ser758 ULK1 phosphorylation following LRRK2 inhibition is decoupled from the repression of autophagosome biogenesis and independent of mTOR complex 1 activity

    Identification of Critical Transcriptomic Signaling Pathways in Patients with H Syndrome and Rosai-Dorfman Disease

    Get PDF
    Biallelic mutations in SLC29A3 cause histiocytosis-lymphadenopathy plus syndrome, also known as H syndrome (HS). HS is a complex disorder, with ~ 25% of patients developing autoinflammatory complications consisting of unexplained fevers, persistently elevated inflammatory markers, and unusual lymphadenopathies, with infiltrating CD68+, S100+, and CD1a− histiocytes, resembling the immunophenotype found in Rosai-Dorfman disease (RDD). We investigated the transcriptomic profiles of monocytes, non-activated (M0), classically activated (M1), and alternatively activated macrophages (M2) in two patients with HS, one without autoinflammatory (HS1) and one with autoinflammatory complications (HS2). RNA sequencing revealed a dysregulated transcriptomic profile in both HS patients compared to healthy controls (HC). HS2, when compared to HS1, had several differentially expressed genes, including genes associated with lymphocytic-histiocytic predominance (e.g. NINL) and chronic immune activation (e.g. B2M). The transcriptomic and cytokine profiles of HS patients were comparable to patients with SAID with high levels of TNF. SERPINA1 gene expression was found to be upregulated in all patients studied. Moreover, higher levels of IFNγ were found in the serum of both HS patients when compared to HC. Gene ontology (GO) enrichment analysis of the DEGs in HS patients revealed the terms “type I IFN,” “IFNγ signaling pathway,” and “immune responses” as the top 3 most significant terms for monocytes. Gene expression analysis of lymph node biopsies from sporadic and H syndrome-associated RDD suggests common underlying pathological process. In conclusion, monocytes and macrophages from both HS patients showed transcriptomic profiles similar to SAIDs and also uniquely upregulated IFNγ signature. These findings may help find better therapeutic options for this rare disorder

    Network analysis identifies proinflammatory plasma cell polarization for secretion of ISG15 in human autoimmunity

    Get PDF
    Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. In this study, we dissect the impact of IFNs on the regulatory networks of human PCs. We show that core PC programs are unaffected, whereas PCs respond to IFNs with distinctive transcriptional responses. The IFN-stimulated gene 15 (ISG15) system emerges as a major transcriptional output induced in a sustained fashion by IFN-α in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active systemic lupus erythematosus. Thus, ISG15-secreting PCs represent a distinct proinflammatory PC subset providing an Ig-independent mechanism of PC action in human autoimmunity

    Roles of Myosin Va and Rab3D in Membrane Remodeling of Immature Secretory Granules

    Get PDF
    Neuroendocrine secretory granules (SGs) are formed at the trans-Golgi network (TGN) as immature intermediates. In PC12 cells, these immature SGs (ISGs) are transported within seconds to the cell cortex, where they move along actin filaments and complete maturation. This maturation process comprises acidification-dependent processing of cargo proteins, condensation of the SG matrix, and removal of membrane and proteins not destined to mature SGs (MSGs) into ISG-derived vesicles (IDVs). We investigated the roles of myosin Va and Rab3 isoforms in the maturation of ISGs in neuroendocrine PC12 cells. The expression of dominant-negative mutants of myosin Va or Rab3D blocked the removal of the endoprotease furin from ISGs. Furthermore, expression of mutant Rab3D, but not of mutant myosin Va, impaired cargo processing of SGs. In conclusion, our data suggest an implication of myosin Va and Rab3D in the maturation of SGs where they participate in overlapping but not identical tasks

    Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells

    Get PDF
    In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo

    The phenotype of MEGF8-related Carpenter syndrome (CRPT2) is refined through the identification of eight new patients

    Get PDF
    Carpenter syndrome (CRPTS) is a rare autosomal recessive condition caused by biallelic variants in genes that encode negative regulators of hedgehog signalling (RAB23 [CRPT1] or, more rarely, MEGF8 [CRPT2]), and is characterised by craniosynostosis, polysyndactyly, and other congenital abnormalities. We describe a further six families comprising eight individuals with MEGF8-associated CRPT2, increasing the total number of reported cases to fifteen, and refine the phenotype of CRPT2 compared to CRPT1. The core features of craniosynostosis, polysyndactyly and (in males) cryptorchidism are almost universal in both CRPT1 and CRPT2. However, laterality defects are present in nearly half of those with MEGF8-associated CRPT2, but are rare in RAB23-associated CRPT1. Craniosynostosis in CRPT2 commonly involves a single midline suture in comparison to the multi-suture craniosynostosis characteristic of CRPT1. No patient to date has carried two MEGF8 gene alterations that are both predicted to lead to complete loss-of-function, suggesting that a variable degree of residual MEGF8 activity may be essential for viability and potentially contributing to variable phenotypic severity. These data refine the phenotypic spectrum of CRPT2 in comparison to CRPT1 and more than double the number of likely pathogenic MEGF8 variants in this rare disorder
    corecore