461 research outputs found

    Progenitors of Supernovae Type Ia

    Full text link
    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.Comment: 6 pages, 6 figures, appeared in proceedings for "The 18th European White Dwarf Workshop

    Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA

    Get PDF
    Double white dwarf (DWD) binaries are expected to be very common in the Milky Way, but their intrinsic faintness challenges the detection of these systems. Currently, only a few tens of detached DWDs are know. Such systems offer the best chance of extracting the physical properties that would allow us to address a wealth of outstanding questions ranging from the nature of white dwarfs, over stellar and binary evolution to mapping the Galaxy. In this paper we explore the prospects for detections of ultra-compact (with binary separations of a few solar radii or less) detached DWDs in: 1) optical radiation with Gaia and the LSST and 2) gravitational wave radiation with LISA. We show that Gaia, LSST and LISA have the potential to detect respectively around a few hundreds, a thousand, and 25 thousand DWD systems. Moreover, Gaia and LSST data will extend by respectively a factor of two and seven the guaranteed sample of binaries detected in electromagnetic and gravitational wave radiation, opening the era of multi-messenger astronomy for these sources.Comment: submitted to MNRA

    The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation.

    Get PDF
    Low-grade gliomas are one of the most common brain tumors in children, where they frequently form within the optic pathway (optic pathway gliomas; OPGs). Since many OPGs occur in the context of the Neurofibromatosis Type 1 (NF1) cancer predisposition syndrome, we have previously employed Nf1 genetically-engineered mouse (GEM) strains to study the pathogenesis of these low-grade glial neoplasms. In the light of the finding that human and mouse low-grade gliomas are composed of Olig2+ cells and that Olig2+ oligodendrocyte precursor cells (OPCs) give rise to murine high-grade gliomas, we sought to determine whether Olig2+ OPCs could be tumor-initiating cells for Nf1 optic glioma. Similar to the GFAP-Cre transgenic strain previously employed to generate Nf1 optic gliomas, Olig2+ cells also give rise to astrocytes in the murine optic nerve in vivo. However, in contrast to the GFAP-Cre strain where somatic Nf1 inactivation in embryonic neural progenitor/stem cells (Nf1flox/mut; GFAP-Cre mice) results in optic gliomas by 3 months of age in vivo, mice with Nf1 gene inactivation in Olig2+ OPCs (Nf1flox/mut; Olig2-Cre mice) do not form optic gliomas until 6 months of age. These distinct patterns of glioma latency do not reflect differences in the timing or brain location of somatic Nf1 loss. Instead, they most likely reflect the cell of origin, as somatic Nf1 loss in CD133+ neural progenitor/stem cells during late embryogenesis results in optic gliomas at 3 months of age. Collectively, these data demonstrate that the cell of origin dictates the time to tumorigenesis in murine optic glioma

    Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming

    Get PDF
    Exocytosis of secretory or synaptic vesicles is executed by a mechanism including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. Munc18-1 is a part of this fusion machinery, but its role is controversial because it is indispensable for fusion but also inhibits the assembly of purified SNAREs in vitro. This inhibition reflects the binding of Munc18-1 to a closed conformation of the target-SNARE syntaxin1. The controversy would be solved if binding to closed syntaxin1 were shown to be stimulatory for vesicle fusion and/or additional essential interactions were identified between Munc18-1 and the fusion machinery. Here, we provide evidence for both notions by dissecting sequential steps of the exocytotic cascade while expressing Munc18 variants in the Munc18-1 null background. In Munc18-1 null chromaffin cells, vesicle docking is abolished and syntaxin levels are reduced. A mutation that diminished Munc18 binding to syntaxin1 in vitro attenuated the vesicle-docking step but rescued vesicle priming in excess of docking. Conversely, expressing the Munc18-2 isoform, which also displays binding to closed syntaxin1, rescued vesicle docking identical with Munc18-1 but impaired more downstream vesicle priming steps. All Munc18 variants restored syntaxin1 levels at least to wild-type levels, showing that the docking phenotype is not caused by syntaxin1 reduction. None of the Munc18 variants affected vesicle fusion kinetics or fusion pore duration. In conclusion, binding of Munc18-1 to closed syntaxin1 stimulates vesicle docking and a distinct interaction mode regulates the consecutive priming step. Copyright © 2007 Society for Neuroscience

    Populations of double white dwarfs in Milky Way satellites and their detectability with LISA

    Get PDF
    Context. Milky Way dwarf satellites are unique objects that encode the early structure formation and therefore represent a window into the high redshift Universe. So far, their study has been conducted using electromagnetic waves only. The future Laser Interferometer Space Antenna (LISA) has the potential to reveal Milky Way satellites through gravitational waves emitted by double white dwarf (DWD) binaries. Aims. We investigate gravitational wave signals that will be detectable by LISA as a possible tool for the identification and characterisation of the Milky Way satellites. Methods. We used the binary population synthesis technique to model the population of DWDs in dwarf satellites and we assessed the impact on the number of LISA detections when making changes to the total stellar mass, distance, star formation history, and metallicity of satellites. We calibrated predictions for the known Milky Way satellites on their observed properties. Results. We find that DWDs emitting at frequencies ≳3 mHz can be detected in Milky Way satellites at large galactocentric distances. The number of these high frequency DWDs per satellite primarily depends on its mass, distance, age, and star formation history, and only mildly depends on the other assumptions regarding their evolution such as metallicity. We find that dwarf galaxies with M⋆ >  106 M⊙ can host detectable LISA sources; the number of detections scales linearly with the satellite’s mass. We forecast that out of the known satellites, Sagittarius, Fornax, Sculptor, and the Magellanic Clouds can be detected with LISA. Conclusions. As an all-sky survey that does not suffer from contamination and dust extinction, LISA will provide observations of the Milky Way and dwarf satellites galaxies, which will be valuable for Galactic archaeology and near-field cosmology

    High Levels of Genetic Divergence Detected in Sacramento Perch Suggests Two Divergent Translocation Sources

    Get PDF
    Translocation has been used to conserve imperiled fishes and create new fisheries. One species for which translocation has played a significant role is the Sacramento Perch Archoplites interruptus. Extirpated from its native range, the Sacramento Perch has been introduced throughout California and Nevada through multiple translocation events, though historical records are incomplete. Recent assessments of eight previously uncharacterized Sacramento Perch populations have prompted reevaluation of range-wide population structure to inform a genetic management plan for long-term resiliency of this species. We examined Sacramento Perch genetic diversity and population structure across the current range of the species using 12 microsatellite markers. We analyzed samples from the eight uncharacterized populations and seven populations previously studied by Schwartz and May (2008). Bayesian clustering supported two distinct clusters of Sacramento Perch herein designated as A and B. Within these two clusters we detected hierarchical substructure, likely due to genetic drift after population founding. Genetic differentiation among populations within the same cluster was relatively low (FST = 0.023–0.176), while differentiation among populations from different clusters was higher (FST = 0.190–0.320). The existence of two strongly divergent genetic clusters in Sacramento Perch suggests two distinct translocation sources, and we recommend that these clusters be treated as genetic management units (GMUs). The B GMU populations had fairly low levels of genetic diversity relative to the A GMU populations. All populations showed evidence of past bottlenecks, and most had effective population sizes placing them at risk for inbreeding depression. Human-facilitated gene flow is recommended to prevent further genetic diversity loss. Due to uncertainty surrounding Sacramento Perch translocation history and strong levels of divergence between the two GMUs, translocations should be facilitated only between populations within the same GMU
    corecore