58 research outputs found

    Identifying the Role of Occupational Therapy in the Pediatric Palliative Care Team for Pediatric Cancer Patients

    Get PDF
    What is the role of occupational therapy in providing effective intervention during palliative care for pediatric cancer patients and their families during the transition to the end of life

    The Breakdown of Preformed Peritoneal Advanced Glycation End Products by Intraperitoneal Alagebrium

    Get PDF
    It has been demonstrated that inhibitors of advanced glycation end products (AGE), such as aminoguanidine, can suppress peritoneal AGE in rats on peritoneal dialysis (PD). However, it is unknown whether late administration of a putative cross-link breaker, alagebrium, could reverse peritoneal AGE. We therefore compared alagebrium with aminoguanidine in their ability to reverse peritoneal AGE in rats on PD. Male Sprague-Dawley rats were randomly divided into 3 groups: group I dialyzed with 4.25% glucose solution for all exchanges; group II dialyzed with 4.25% glucose solution containing aminoguanidine, and group III dialyzed with 4.25% glucose solution containing alagebrium for last 8 weeks of 12-week dialysis period. Dialysis exchanges were performed 2 times a day for 12 weeks. Immunohistochemistry was performed using a monoclonal anti-AGE antibody. One-hour PET was performed for comparison of transport characteristics. The immunolabelling of AGE in peritoneal membrane was markedly decreased in the alagebrium group. Consistent with this, the alagebrium group exhibited significantly higher D/Do glucose and lower D/P urea, suggesting low peritoneal membrane transport. But there were no significant differences between the control and the aminoguanidine group. These results suggest that the alagebrium may be the optimal therapeutic approach, compared with treatment with inhibitors of AGE formation, in rats on PD

    Processing GOTO data with the Rubin Observatory LSST Science Pipelines I: Production of coadded frames

    Get PDF
    The past few decades have seen the burgeoning of wide field, high cadence surveys, the most formidable of which will be the Legacy Survey of Space and Time (LSST) to be conducted by the Vera C. Rubin Observatory. So new is the field of systematic time-domain survey astronomy, however, that major scientific insights will continue to be obtained using smaller, more flexible systems than the LSST. One such example is the Gravitational-wave Optical Transient Observer (GOTO), whose primary science objective is the optical follow-up of Gravitational Wave events. The amount and rate of data production by GOTO and other wide-area, high-cadence surveys presents a significant challenge to data processing pipelines which need to operate in near real-time to fully exploit the time-domain. In this study, we adapt the Rubin Observatory LSST Science Pipelines to process GOTO data, thereby exploring the feasibility of using this "off-the-shelf" pipeline to process data from other wide-area, high-cadence surveys. In this paper, we describe how we use the LSST Science Pipelines to process raw GOTO frames to ultimately produce calibrated coadded images and photometric source catalogues. After comparing the measured astrometry and photometry to those of matched sources from PanSTARRS DR1, we find that measured source positions are typically accurate to sub-pixel levels, and that measured L-band photometries are accurate to ∌50 mmag at mL∌16 and ∌200 mmag at mL∌18. These values compare favourably to those obtained using GOTO's primary, in-house pipeline, GOTOPHOTO, in spite of both pipelines having undergone further development and improvement beyond the implementations used in this study. Finally, we release a generic "obs package" that others can build-upon should they wish to use the LSST Science Pipelines to process data from other facilities

    Self-Supervised Clustering on Image-Subtracted Data with Deep-Embedded Self-Organizing Map

    Full text link
    Developing an effective automatic classifier to separate genuine sources from artifacts is essential for transient follow-ups in wide-field optical surveys. The identification of transient detections from the subtraction artifacts after the image differencing process is a key step in such classifiers, known as real-bogus classification problem. We apply a self-supervised machine learning model, the deep-embedded self-organizing map (DESOM) to this "real-bogus" classification problem. DESOM combines an autoencoder and a self-organizing map to perform clustering in order to distinguish between real and bogus detections, based on their dimensionality-reduced representations. We use 32x32 normalized detection thumbnails as the input of DESOM. We demonstrate different model training approaches, and find that our best DESOM classifier shows a missed detection rate of 6.6% with a false positive rate of 1.5%. DESOM offers a more nuanced way to fine-tune the decision boundary identifying likely real detections when used in combination with other types of classifiers, for example built on neural networks or decision trees. We also discuss other potential usages of DESOM and its limitations

    Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-wave Optical Transient Observer (GOTO-4)

    Get PDF
    We report the results of optical follow-up observations of 29 gravitational-wave (GW) triggers during the first half of the LIGO–Virgo Collaboration (LVC) O3 run with the Gravitational-wave Optical Transient Observer (GOTO) in its prototype 4-telescope configuration (GOTO-4). While no viable electromagnetic (EM) counterpart candidate was identified, we estimate our 3D (volumetric) coverage using test light curves of on- and off-axis gamma-ray bursts and kilonovae. In cases where the source region was observable immediately, GOTO-4 was able to respond to a GW alert in less than a minute. The average time of first observation was 8.79 h after receiving an alert (9.90 h after trigger). A mean of 732.3 square degrees were tiled per event, representing on average 45.3 per cent of the LVC probability map, or 70.3 per cent of the observable probability. This coverage will further improve as the facility scales up alongside the localization performance of the evolving GW detector network. Even in its 4-telescope prototype configuration, GOTO is capable of detecting AT2017gfo-like kilonovae beyond 200 Mpc in favourable observing conditions. We cannot currently place meaningful EM limits on the population of distant (⁠D^L=1.3 Gpc) binary black hole mergers because our test models are too faint to recover at this distance. However, as GOTO is upgraded towards its full 32-telescope, 2 node (La Palma & Australia) configuration, it is expected to be sufficiently sensitive to cover the predicted O4 binary neutron star merger volume, and will be able to respond to both northern and southern triggers

    Machine learning for transient recognition in difference imaging with minimum sampling effort

    Get PDF
    The amount of observational data produced by time-domain astronomy is exponentially in-creasing. Human inspection alone is not an effective way to identify genuine transients fromthe data. An automatic real-bogus classifier is needed and machine learning techniques are commonly used to achieve this goal. Building a training set with a sufficiently large number of verified transients is challenging, due to the requirement of human verification. We presentan approach for creating a training set by using all detections in the science images to be thesample of real detections and all detections in the difference images, which are generated by the process of difference imaging to detect transients, to be the samples of bogus detections. This strategy effectively minimizes the labour involved in the data labelling for supervised machine learning methods. We demonstrate the utility of the training set by using it to train several classifiers utilizing as the feature representation the normalized pixel values in 21-by-21pixel stamps centered at the detection position, observed with the Gravitational-wave Optical Transient Observer (GOTO) prototype. The real-bogus classifier trained with this strategy can provide up to 95% prediction accuracy on the real detections at a false alarm rate of 1%

    Light curve classification with recurrent neural networks for GOTO: dealing with imbalanced data

    Get PDF
    The advent of wide-field sky surveys has led to the growth of transient and variable source discoveries. The data deluge produced by these surveys has necessitated the use of machine learning (ML) and deep learning (DL) algorithms to sift through the vast incoming data stream. A problem that arises in real-world applications of learning algorithms for classification is imbalanced data, where a class of objects within the data is underrepresented, leading to a bias for over-represented classes in the ML and DL classifiers. We present a recurrent neural network (RNN) classifier that takes in photometric time-series data and additional contextual information (such as distance to nearby galaxies and on-sky position) to produce real-time classification of objects observed by the Gravitational-wave Optical Transient Observer (GOTO), and use an algorithm-level approach for handling imbalance with a focal loss function. The classifier is able to achieve an Area Under the Curve (AUC) score of 0.972 when using all available photometric observations to classify variable stars, supernovae, and active galactic nuclei. The RNN architecture allows us to classify incomplete light curves, and measure how performance improves as more observations are included. We also investigate the role that contextual information plays in producing reliable object classification

    Light-curve classification with recurrent neural networks for GOTO: dealing with imbalanced data

    Get PDF
    The advent of wide-field sky surveys has led to the growth of transient and variable source discoveries. The data deluge produced by these surveys has necessitated the use of machine learning (ML) and deep learning (DL) algorithms to sift through the vast incoming data stream. A problem that arises in real-world applications of learning algorithms for classification is imbalanced data, where a class of objects within the data is underrepresented, leading to a bias for overrepresented classes in the ML and DL classifiers. We present a recurrent neural network (RNN) classifier that takes in photometric time-series data and additional contextual information (such as distance to nearby galaxies and on-sky position) to produce real-time classification of objects observed by the Gravitational-wave Optical Transient Observer, and use an algorithm-level approach for handling imbalance with a focal loss function. The classifier is able to achieve an Area Under the Curve (AUC) score of 0.972 when using all available photometric observations to classify variable stars, supernovae, and active galactic nuclei. The RNN architecture allows us to classify incomplete light curves, and measure how performance improves as more observations are included. We also investigate the role that contextual information plays in producing reliable object classification

    Searching for Fermi GRB optical counterparts with the prototype gravitational-wave optical transient observer (GOTO)

    Get PDF
    The typical detection rate of ∌1 gamma-ray burst (GRB) per day by the Fermi Gamma-ray Burst Monitor (GBM) provides a valuable opportunity to further our understanding of GRB physics. However, the large uncertainty of the Fermi localization typically prevents rapid identification of multi-wavelength counterparts. We report the follow-up of 93 Fermi GRBs with the Gravitational-wave Optical Transient Observer (GOTO) prototype on La Palma. We selected 53 events (based on favourable observing conditions) for detailed analysis, and to demonstrate our strategy of searching for optical counterparts. We apply a filtering process consisting of both automated and manual steps to 60 085 candidates initially, rejecting all but 29, arising from 15 events. With ≈3 GRB afterglows expected to be detectable with GOTO from our sample, most of the candidates are unlikely to be related to the GRBs. Since we did not have multiple observations for those candidates, we cannot confidently confirm the association between the transients and the GRBs. Our results show that GOTO can effectively search for GRB optical counterparts thanks to its large field of view of ≈40 square degrees and its depth of ≈20 mag. We also detail several methods to improve our overall performance for future follow-up programs of Fermi GRBs
    • 

    corecore