354 research outputs found

    Partial and macroscopic phase coherences in underdoped Bi2{}_{2}Sr2{}_{2}CaCu2{}_{2}O8+δ{}_{8+{\delta}} thin film

    Full text link
    A combined study with use of time-domain pump-probe spectroscopy and time-domain terahertz transmission spectroscopy have been carried out on an underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+{\delta}} thin film. It was observed that the low energy multi-excitation states were decomposed into superconducting gap and pseudogap. The pseudogap locally opens below T210T^*{\simeq}210 K simultaneously with the appearance of the high-frequency partial pairs around 1.3 THz. With decreasing temperature, the number of the local domains with the partial phase coherence increased and saturated near 100 K, and the macroscopic superconductivity appeared below 76 K through the superconductivity fluctuation state below 100 K. These experimental results indicate that the pseudogap makes an important role for realization of the superconductivity as a precursor to switch from the partial to the macroscopic phase coherence.Comment: Revtex4, 4 pages, 4 figure

    Collective Antenna Effects in the Terahertz and Infrared Response of Highly Aligned Carbon Nanotube Arrays

    Get PDF
    We study macroscopically-aligned single-wall carbon nanotube arrays with uniform lengths via polarization-dependent terahertz and infrared transmission spectroscopy. Polarization anisotropy is extreme at frequencies less than \sim3 THz with no sign of attenuation when the polarization is perpendicular to the alignment direction. The attenuation for both parallel and perpendicular polarizations increases with increasing frequency, exhibiting a pronounced and broad peak around 10 THz in the parallel case. We model the electromagnetic response of the sample by taking into account both radiative scattering and absorption losses. We show that our sample acts as an effective antenna due to the high degree of alignment, exhibiting much larger radiative scattering than absorption in the mid/far-infrared range. Our calculated attenuation spectrum clearly shows a non-Drude peak at \sim10 THz in agreement with the experiment.Comment: 5 pages, 5 figure

    Laser Terahertz Emission Microscope

    Get PDF
    Abstract: Laser terahertz (THz) emission microscope (LTEM) is reviewed. Femtosecond lasers can excite the THz waves in various electronic materials due to ultrafast current modulation. The current modulation is realized by acceleration or deceleration of photo-excited carriers, and thus LTEM visualizes dynamic photo-response of substances. We construct free-space type and scanning probe one with transmission or reflection modes. The developed systems have a minimum spatial resolution better than 2 µm, which is defined by the laser beam diameter. We also present some examples of LTEM applications

    Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    Get PDF
    Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane

    Graphene field-effect-transistors with high on/off current ratio and large transport band gap at room temperature

    Full text link
    Graphene is considered to be a promising candidate for future nano-electronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect-transistors (FETs) cannot be turned off effectively due to the absence of a bandgap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measurements suggest that a bandgap up to a few hundred meV can be created by the perpendicular E-field in bi-layer graphenes. Although previous carrier transport measurements in bi-layer graphene transistors did indicate a gate-induced insulating state at temperature below 1 Kelvin, the electrical (or transport) bandgap was estimated to be a few meV, and the room temperature on/off current ratio in bi-layer graphene FETs remains similar to those in single-layer graphene FETs. Here, for the first time, we report an on/off current ratio of around 100 and 2000 at room temperature and 20 K, respectively in our dual-gate bi-layer graphene FETs. We also measured an electrical bandgap of >130 and 80 meV at average electric displacements of 2.2 and 1.3 V/nm, respectively. This demonstration reveals the great potential of bi-layer graphene in applications such as digital electronics, pseudospintronics, terahertz technology, and infrared nanophotonics.Comment: 3 Figure

    Angular dependence of the radiation power of a Josephson STAR-emitter

    Get PDF
    We calculate the angular dependence of the power of stimulated terahertz amplified radiation (STAR) emitted from a dcdc voltage applied across a stack of intrinsic Josephson junctions. During coherent emission, we assume a spatially uniform acac Josephson current density in the stack acts as a surface electric current density antenna source, and the cavity features of the stack are contained in a magnetic surface current density source. A superconducting substrate acts as a perfect magnetic conductor with H,ac=0H_{||,ac}=0 on its surface. The combined results agree very well with recent experimental observations. Existing Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} crystals atop perfect electric conductors could have Josephson STAR-emitter power in excess of 5 mW, acceptable for many device applications.Comment: 3 pages 3 figure

    The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers

    Get PDF
    The technique of molecular beam epitaxy has recently been used to demonstrate the growth of terahertz frequency GaAs/AlGaAs quantum cascade lasers (QCL) with Watt-level optical output powers. In this paper, we discuss the critical importance of achieving accurate layer thicknesses and alloy compositions during growth, and demonstrate that precise growth control as well as run-to-run growth reproducibility is possible. We also discuss the importance of minimizing background doping level in maximizing QCL performance. By selecting high-performance active region designs, and optimizing the injection doping level and device fabrication, we demonstrate total optical (two-facet) output powers as high as 1.56 W

    Metamaterial Polarization Converter Analysis: Limits of Performance

    Full text link
    In this paper we analyze the theoretical limits of a metamaterial converter that allows for linear-to- elliptical polarization transformation with any desired ellipticity and ellipse orientation. We employ the transmission line approach providing a needed level of the design generalization. Our analysis reveals that the maximal conversion efficiency for transmission through a single metamaterial layer is 50%, while the realistic re ection configuration can give the conversion efficiency up to 90%. We show that a double layer transmission converter and a single layer with a ground plane can have 100% polarization conversion efficiency. We tested our conclusions numerically reaching the designated limits of efficiency using a simple metamaterial design. Our general analysis provides useful guidelines for the metamaterial polarization converter design for virtually any frequency range of the electromagnetic waves.Comment: 10 pages, 11 figures, 2 table

    Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice

    Get PDF
    We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity
    corecore