144 research outputs found

    Infrared Spectral Energy Distribution of Galaxies in the AKARI All Sky Survey: Correlations with Galaxy Properties, and Their Physical Origin

    Full text link
    We have studied the properties of more than 1600 low-redshift galaxies by utilizing high-quality infrared flux measurements of the AKARI All-Sky Survey and physical quantities based on optical and 21-cm observations. Our goal is to understand the physics determining the infrared spectral energy distribution (SED). The ratio of the total infrared luminosity L_TIR, to the star-formation rate (SFR) is tightly correlated by a power-law to specific SFR (SSFR), and L_TIR is a good SFR indicator only for galaxies with the largest SSFR. We discovered a tight linear correlation for normal galaxies between the radiation field strength of dust heating, estimated by infrared SED fits (U_h), and that of galactic-scale infrared emission (U_TIR ~ L_TIR/R^2), where R is the optical size of a galaxy. The dispersion of U_h along this relation is 0.3 dex, corresponding to 13% dispersion in the dust temperature. This scaling and the U_h/U_TIR ratio can be explained physically by a thin layer of heating sources embedded in a thicker, optically-thick dust screen. The data also indicate that the heated fraction of the total dust mass is anti-correlated to the dust column density, supporting this interpretation. In the large U_TIR limit, the data of circumnuclear starbursts indicate the existence of an upper limit on U_h, corresponding to the maximum SFR per gas mass of ~ 10 Gyr^{-1}. We find that the number of galaxies sharply drops when they become optically thin against dust-heating radiation, suggesting that a feedback process to galaxy formation (likely by the photoelectric heating) is working when dust-heating radiation is not self-shielded on a galactic scale. Implications are discussed for the M_HI-size relation, the Kennicutt-Schmidt relation, and galaxy formation in the cosmological context.Comment: 29 pages including 28 figures. matches the published version (PASJ 2011 Dec. 25 issue). The E-open option was chosen for this article, i.e., the official version available from PASJ site (http://pasj.asj.or.jp/v63/n6/630613/630613-frame.html) without restrictio

    Locus coeruleus and dopamine-dependent memory consolidation

    Get PDF
    Most everyday memories including many episodic-like memories that we may form automatically in the hippocampus (HPC) are forgotten, while some of them are retained for a long time by a memory stabilization process, called initial memory consolidation. Specifically, the retention of everyday memory is enhanced, in humans and animals, when something novel happens shortly before or after the time of encoding. Converging evidence has indicated that dopamine (DA) signaling via D1/D5 receptors in HPC is required for persistence of synaptic plasticity and memory, thereby playing an important role in the novelty-associated memory enhancement. In this review paper, we aim to provide an overview of the key findings related to D1/D5 receptor-dependent persistence of synaptic plasticity and memory in HPC, especially focusing on the emerging evidence for a role of the locus coeruleus (LC) in DA-dependent memory consolidation. We then refer to candidate brain areas and circuits that might be responsible for detection and transmission of the environmental novelty signal and molecular and anatomical evidence for the LC-DA system. We also discuss molecular mechanisms that might mediate the environmental novelty-associated memory enhancement, including plasticity-related proteins that are involved in initial memory consolidation processes in HPC

    Simplest fidelity-estimation method for graph states with depolarizing noise

    Full text link
    Graph states are entangled states useful for several quantum information processing tasks such as measurement-based quantum computation and quantum metrology. As the size of graph states realized in experiments increases, it becomes more essential to devise efficient methods estimating the fidelity between the ideal graph state and an experimentally-realized actual state. Any efficient fidelity-estimation method, in general, must use multiple experimental settings, i.e., needs to switch between at least two measurements. Recently, it has been shown that a single measurement is sufficient if the noise can be modeled as the phase-flip error. Since the bit-flip error should also occur in several experiments, it is desired to extend this simplest method to noise models that include phase and bit-flip errors. However, it seems to be nontrivial because their result strongly depends on properties of the phase-flip error. In this paper, by analyzing effects of the bit-flip error on stabilizer operators of graph states, we achieve the extension to the depolarizing noise, which is a major noise model including phase and bit-flip errors. We also numerically evaluate our simplest method for noise models interpolating between the phase-flip and depolarizing noises.Comment: 10 pages, 6 figure

    Development of a low-alpha-emitting {\mu}-PIC for NEWAGE direction-sensitive dark-matter search

    Full text link
    NEWAGE is a direction-sensitive dark-matter-search experiment that uses a micro-patterned gaseous detector, or {\mu}-PIC, as the readout. The main background sources are {\alpha}-rays from radioactive contaminants in the {\mu}-PIC. We have therefore developed a low-alpha-emitting {\mu}-PICs and measured its performances. We measured the surface {\alpha}-ray emission rate of the {\mu}-PIC in the Kamioka mine using a surface {\alpha}-ray counter based on a micro TPC.Comment: 6 pages, 4 figure

    Brain region networks for the assimilation of new associative memory into a schema

    Get PDF
    Alterations in long-range functional connectivity between distinct brain regions are thought to contribute to the encoding of memory. However, little is known about how the activation of an existing network of neocortical and hippocampal regions might support the assimilation of relevant new information into the preexisting knowledge structure or ‘schema’. Using functional mapping for expression of plasticity-related immediate early gene products, we sought to identify the long-range functional network of paired-associate memory, and the encoding and assimilation of relevant new paired-associates. Correlational and clustering analyses for expression of immediate early gene products revealed that midline neocortical-hippocampal connectivity is strongly associated with successful memory encoding of new paired-associates against the backdrop of the schema, compared to both (1) unsuccessful memory encoding of new paired-associates that are not relevant to the schema, and (2) the mere retrieval of the previously learned schema. These findings suggest that the certain midline neocortical and hippocampal networks support the assimilation of newly encoded associative memories into a relevant schema. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13041-022-00908-9

    Silent learning

    Get PDF
    Contains fulltext : 200389.pdf (publisher's version ) (Closed access)We introduce the concept of "silent learning"-the capacity to learn despite neuronal cell-firing being largely absent. This idea emerged from thinking about dendritic computation [1, 2] and examining whether the encoding, expression, and retrieval of hippocampal-dependent memory could be dissociated using the intrahippocampal infusion of pharmacological compounds. We observed that very modest enhancement of GABAergic inhibition with low-dose muscimol blocked both cell-firing and the retrieval of an already-formed memory but left induction of long-term potentiation (LTP) and new spatial memory encoding intact (silent learning). In contrast, blockade of hippocampal NMDA receptors by intrahippocampal D-AP5 impaired both the induction of LTP and encoding but had no effect on memory retrieval. Blockade of AMPA receptors by CNQX impaired excitatory synaptic transmission and cell-firing and both memory encoding and retrieval. Thus, in keeping with the synaptic plasticity and memory hypothesis [3], the hippocampal network can mediate new memory encoding when LTP induction is intact even under conditions in which somatic cell-firing is blocked

    Execution of new trajectories towards a stable goal without a functional hippocampus

    Get PDF
    The hippocampus is a critical component of a mammalian spatial navigation system, with the firing sequences of hippocampal place cells during sleep or immobility constituting a “replay” of an animal's past trajectories. A novel spatial navigation task recently revealed that such “replay” sequences of place fields can also prospectively map onto imminent new paths to a goal that occupies a stable location during each session. It was hypothesized that such “prospective replay” sequences may play a causal role in goal-directed navigation. In the present study, we query this putative causal role in finding only minimal effects of muscimol-induced inactivation of the dorsal and intermediate hippocampus on the same spatial navigation task. The concentration of muscimol used demonstrably inhibited hippocampal cell firing in vivo and caused a severe deficit in a hippocampal-dependent “episodic-like” spatial memory task in a watermaze. These findings call into question whether “prospective replay” of an imminent and direct path is actually necessary for its execution in certain navigational tasks.Aarhus Institute of Advanced Studies, AarhusUniversitet, Grant/Award Number: 754513;ICT-FET (European Commission), Grant/AwardNumber: 600725; Lundbeckfonden,Grant/Award Number: DANDRITE-R248-2016-2518; Novo Nordisk Fonden,Grant/Award Number: NNF17OC0026774;Wellcome Trust, Grant/Award Numbers:206491, 207481/Z/17/Z; European Molecular Biology Organization, Grant/Award Number:EMBOALTF382-2017Peer reviewe

    Cell-type-specific optogenetic stimulation of the locus coeruleus induces slow-onset potentiation and enhances everyday memory in rats

    Get PDF
    Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.</p

    Ablation of Glutamate Receptor GluR delta 2 in Adult Purkinje Cells Causes Multiple Innervation of Climbing Fibers by Inducing Aberrant Invasion to Parallel Fiber Innervation Territory

    Get PDF
    Glutamate receptor GluRδ2 is exclusively expressed in Purkinje cells (PCs) from early development and plays key roles in parallel fiber (PF) synapse formation, elimination of surplus climbing fibers (CFs), long-term depression, motor coordination, and motor learning. To address its role in adulthood, we previously developed a mouse model of drug-induced GluRδ2 ablation in adult PCs (Takeuchi et al., 2005). In that study, we demonstrated an essential role to maintain the connectivity of PF-PC synapses, based on the observation that both mismatching of presynaptic and postsynaptic specializations and disconnection of PF-PC synapses are progressively increased after GluRδ2 ablation. Here, we pursued its role for CF wiring in adult cerebellum. In parallel with the disconnection of PF-PC synapses, ascending CF branches exhibited distal extension to innervate distal dendrites of the target and neighboring PCs. Furthermore, transverse CF branches, a short motile collateral rarely forming synapses in wild-type animals, displayed aberrant mediolateral extension to innervate distal dendrites of neighboring and remote PCs. Consequently, many PCs were wired by single main CF and other surplus CFs innervating a small part of distal dendrites. Electrophysiological recording further revealed that surplus CF-EPSCs characterized with slow rise time and small amplitude emerged after GluRδ2 ablation, and increased progressively both in number and amplitude. Therefore, GluRδ2 is essential for maintaining CF monoinnervation in adult cerebellum by suppressing aberrant invasion of CF branches to the territory of PF innervation. Thus, GluRδ2 fuels heterosynaptic competition and gives PFs the competitive advantages over CFs throughout the animal's life

    PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matters and sea sediments

    Get PDF
    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matters. Among atmospheric particulate matters, the PAHs concentration was highest in FPM collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric particulate matters. 1/EC50 was 1-10 L g-1 PM for atmospheric particulate matters and 0.1-1 L g-1 dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg-1 16PAHs) and was the same in the order of the magnitude as that of FPM and CPM. The ratio of sediments collected from the west was more similar to that of CPM while that of the east was to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and from the results. PAHs pattern of sea sediments was fairly different from that of FPM and CPM. Comparison to previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.This work was supported by Kurita Water and Environmental Foundation and Grant-in-Aid for Scientific Research (C
    corecore