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SUMMARY 25	

	26	

We	 introduce	 the	 concept	 of	 'silent	 learning'	 -	 the	 capacity	 to	 learn	 despite	27	

neuronal	cell-firing	being	largely	absent.	This	idea	emerged	from	thinking	about	28	

dendritic	computation[1,	2]	and	examining	whether	the	encoding,	expression	and	29	

retrieval	of	hippocampal-dependent	memory	could	be	dissociated	using	the	intra-30	

hippocampal	 infusion	 of	 pharmacological	 compounds.	 We	 observed	 that	 very	31	

modest	 enhancement	 of	 GABAergic	 inhibition	 with	 low-dose	muscimol	 blocked	32	

both	cell-firing	and	the	retrieval	of	an	already	formed	memory,	but	left	induction	33	

of	 long-term	potentiation	(LTP)	and	new	spatial	memory	encoding	intact	(silent	34	

learning).	 In	 contrast,	 blockade	 of	 hippocampal	 NMDA	 receptors	 by	35	

intrahippocampal	D-AP5	impaired	both	the	induction	of	LTP	and	encoding,	but	had	36	

no	effect	 on	memory	 retrieval.	 	 Blockade	of	AMPA	 receptors	by	CNQX	 impaired	37	

excitatory	synaptic	transmission	and	cell-firing,	and	both	memory	encoding	and	38	

retrieval.	Thus,	in	keeping	with	the	synaptic	plasticity	and	memory	hypothesis	[3],	39	

the	hippocampal	network	can	mediate	new	memory	encoding	when	LTP	induction	40	

is	intact	even	under	conditions	in	which	somatic	cell-firing	is	blocked.	41	

	42	

RESULTS 43	

 44	

	 Encoding	and	 retrieval	of	declarative	memory	are	 the	 two	sides	of	 a	 coin	with	45	

respect	 to	 the	 neural	 mechanisms	 of	 learning	 and	 memory.	 Encoding	 refers	 to	 the	46	

acquisition	of	new	information,	whereas	retrieval	involves	the	reactivation	of	previously	47	

learned	memory	traces.	Identifying	the	neural	activity	associated	with	specific	memory	48	

processes	such	as	these	is	a	necessary	step	to	understand	of	how	information-processing	49	

circuits	operate.	 The	 present	 study	 tests	whether	 (a)	memory	 retrieval	 requires	 cell-50	

firing,	 enabling	 information	 transfer	 within	 and	 between	 networks;	 and	 (b)	 memory	51	

encoding	may	minimally	require	the	induction	and	expression	of	synaptic	plasticity,	with	52	

little	or	no	somatic	cell-firing.		The	occurrence	of	learning	would	not	be	observable,	but	53	

we	argue	that	recent	advances	in	the	physiology	of	dendritic	computation	predict	such	54	

'silent	learning'	could	occur.	55	

			56	
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	 Loss-of-function	 manipulations	 such	 as	 lesions,	 drugs	 and	 molecular	57	

interventions	have	long	been	deployed	to	look	for	‘learning	impairments’	in	specific	tasks.	58	

Many	studies	focus	on	misleading	learning	curves	during	an	intervention[4,	5]	that	likely	59	

reflect	impacts	on	encoding,	storage,	consolidation	and/or	retrieval	without	dissociating	60	

their	relative	contributions.	Lesions	can	also	cause	‘performance’	effects	(i.e.		deleterious	61	

effects	 upon	 sensorimotor	 processes	 or	 motivation).	 Specific	 protocols	 to	 dissociate	62	

encoding	and	retrieval	definitively	include:	for	retrieval	-	monitoring	performance	on	the	63	

first	trial	of	new	training	before	any	new	learning	can	take	place[6];	and	for	encoding	-	64	

application	of	 the	 intervention	during	 the	new	training,	but	 testing	 later	 in	 its	absence	65	

when	retrieval	should	be	operating	normally[5].	A	suitable	protocol	for	the	watermaze	is	66	

the	delayed-matching	to	place	(DMP)	or	'everyday	memory'	procedure	which	involves	67	

learning	a	new	daily	spatial	location	of	the	escape	platform	during	each	session[7].	The	68	

principle	is	that,	on	each	session,	the	animals	first	retrieve	a	memory	of	where	escape	69	

was	possible	during	 the	previous	 session,	 and	 then	update	 their	memory	by	encoding	70	

where	the	escape	platform	is	now	located	during	the	current	session.	The	effectiveness	71	

of	this	memory	encoding	is	tested	on	a	subsequent	session	in	which	the	animals	should	72	

again	demonstrate	memory	of	the	preceding	session.	73	

	74	

	 The	main	study	we	examined	the	 impact	of	drugs	over	5	successive	series	of	3	75	

linked	sessions	(hereafter	called	s1,	s2	and	s3)	in	a	within-subject	manner	(Figure	1A).	It	76	

followed	animal	handling,	bilateral	drug	cannula	implantation	and	initial	training	over	8–77	

10	sessions,	during	which	the	16	animals	learned	the	DMP	task	well	each	day	with	a	new	78	

platform	location	chosen	for	each	session	of	4	learning	trials	(Figures	1A,B,E).		An	animal	79	

might	be	trained	to	encode	that	the	escape	platform	is	in	the	NW	(North-West)	quadrant	80	

on	all	4	 trials	of	 session	1	 (s1,	Figure	1B).	On	 the	next	 session	 (s2),	using	an	Atlantis	81	

Platform	procedure	[8]	in	which	memory	retrieval	is	assessed	during	the	first	60	s	of	the	82	

first	trial	before	any	new	learning	takes	place	(Figures	1B,C,D	and	S1),	the	animal	should	83	

remember	this	NW	location	(red	dotted	circle)	by	searching	there	(during	the	first	60	s)	84	

before	learning	that	the	hidden	platform	had	been	moved	to	SSW	(South-South-West).	85	

Encoding	of	 this	new	location	occurs	during	the	 four	escape	trials	of	s2,	updating	and	86	

over-writing	 the	 memory	 acquired	 in	 s1.	 The	 platform	 is	 moved	 again	 for	 s3,	 again	87	

allowing	 an	 analogous	 test	 of	memory	 during	 the	 first	 60	 s.	 In	 this	 protocol,	memory	88	

retrieval	is	procedurally	dissociated	from	new	memory	encoding.			89	
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	90	

	 This	procedure	enabled	effective	memory	encoding	of	each	daily	 location,	with	91	

performance	 typically	 characterised	 by	 a	 stable	 monotonic	 decline	 in	 first-crossing	92	

latency	across	trials	within	each	session	(Figure	1E;	Data	S1).	The	swim-latency	on	trial	93	

1	 (≃50-70	 sec)	 was	 stable	 across	 sessions,	 as	 was	 the	 ‘savings’	 in	 latency	 of	94	

approximately	30	s	between	trials	1	and	2	of	each	session.	Asymptotic	performance	over	95	

trials	2-4	reflects	the	effectiveness	of	memory	updating.	96	

	97	

In	vivo	Hippocampal	Physiology	98	

	 Previous	 studies	 have	 established	 that	 blocking	 hippocampal	 N-methyl-D-99	

aspartate	(NMDA)	receptors,	via	pharmacological	 [D-2-amino-5-phosphonopentanoate	100	

(D-AP5)]	or	molecular-genetic	interventions,	limits	memory	encoding	without	effect	on	101	

retrieval[7,	9-12].	This	is	observed	with	1-2μl	bilateral	infusions	into	dorsal	hippocampus,	102	

with	autoradiography	indicating	substantial	spread	along	the	longitudinal	axis	following	103	

a	 2μl	 infusion[13].	 This	 behavioural	 pattern	 is	 mechanistically	 linked	 to	 blockade	 of	104	

NMDA	 receptor-mediated	 activity-dependent	 synaptic	 plasticity[3,	 14].	 Blocking	 a-105	

amino-3-hydroxy-5-methyl-4-isoxazole	propionate	(AMPA)	receptors	pharmacologically	106	

limits	 encoding,	 consolidation	 and	 retrieval	 [15].	 Prior	 focus	 on	 AMPA	 and	 NMDA	107	

receptors	 left	 uninvestigated	 the	 possible	 contribution	 of	g-aminobutyric	 acid	 (GABA-108	

ergic)	inhibition	which	is	known	to	regulate	long-term	potentiation	(LTP)	induction[14].	109	

The	 importance	 of	 dynamic	 patterns	 of	 inhibitory	 activity	 is	 now	 recognised	 as	110	

functionally	 important[16,	 17],	 along	 with	 learning-associated	 changes	 in	 inhibitory	111	

circuitry	that	can	affect	the	fidelity	of	memory[18,	19].	112	

	113	

	 Using	 in	 vivo	 electrophysiology	 in	 male	 Lister	 Hooded	 rats	 (n=20)	 to	 identify	114	

appropriate	drug	concentrations	using	and	the	time	course	of	their	effects	(Figure	2),	we	115	

sought	 drug	 doses	 that	 would	 differentially	 affect	 (a)	 cell-firing,	 (b)	 fast	 synaptic	116	

transmission,	and/or	(c)	activity-dependent	synaptic	plasticity	in	vivo	in	the	hippocampal	117	

formation.	 We	 chose	 to	 monitor	 the	 dentate	 gyrus	 electrophysiologically,	 while	118	

recognising	that	an	 infusion	targeting	the	outer	molecular	of	 the	dorsal	dentate	gyrus	119	

would	diffuse	throughout	dorsal	CA1	and	CA3	as	well.		In	the	case	of	muscimol,	it	should	120	

incur	 reasonably	 widespread	 binding	 to	 somatic	 and	 dendritically	 located	 GABAA	121	

receptors.		122	



 Rossato et al - 5  

	123	

	 A	 key	 new	 finding	 is	 that	 low-dose	 muscimol	 blocked	 cell-firing	 but	 not	 LTP	124	

induction.		Infusion	of	0.38	nanomoles	of	muscimol	caused	a	modest	35%	decrease	of	the	125	

field	excitatory	postsynaptic	potential	(fEPSP)	(Figures	2A,B;	Data	S2),	but	the	dentate	126	

population	spike	ceased	almost	completely	from	30	min	post-infusion	for	2	hr	(measured	127	

at	 1.0	 to	 1.5	 mm	 from	 the	 infusion	 cannula;	 Figures	 2C,D).	 Strikingly,	 low-dose	 of	128	

muscimol	 infusion	 left	 induction	 of	 LTP	 intact	 (Figures	 2E,F;	 Data	 S2).	 Enhanced	129	

GABAergic	 inhibition	normally	blocks	 the	 induction	of	LTP[14],	but	our	dose	 titration	130	

down	to	0.38	nanomoles	achieved	a	situation	in	which	LTP	induction	was	intact	despite	131	

the	absence	of	pre-induction	cell-firing.	This	low	dose	of	muscimol	did	not	prevent	a	very	132	

small	 population	 spike	 post-LTP	 (Figure	 S3;	 <3	 mV),	 a	 change	 that	 is	 unlikely	 to	 be	133	

relevant	 to	 the	more	distributed	patterns	of	learning-associated	dendritic	and	somatic	134	

neural	activity	in	the	freely-moving	animal	(see	below).	135	

	136	

	 In	 contrast,	D-AP5	 (60	nanomoles)	 caused	a	 transitory	disruption	of	 the	 fEPSP	137	

before	a	return	to	baseline	within	30	min,	and	a	partial	albeit	more	sustained	inhibition	138	

of	the	population	spike	(Figures	2A–D;	Data	S2).	However,	as	expected,	it	blocked	LTP	139	

induction	(Figures	2E,F;	Data	S2).	CNQX	(6	nanomoles)	caused	the	fEPSP	to	be	completely	140	

inhibited	within	30	min	with	respect	 to	both	synaptic	activation	and	cell-firing	(>90%	141	

decrease	for	over	1	hr,	Figures	2A–D).	In	the	absence	of	a	measureable	fEPSP,	CNQX	was	142	

not	tested	with	respect	to	LTP.	143	

	144	

Silent	Learning	145	

	 The	stage	was	now	set	to	conduct	the	companion	behavioural	study	using	male	146	

Lister	Hooded	rats	(n=16)	trained	in	the	task	and	now	subject	to	intrahippocampal	drug	147	

infusions.	 	Each	session	was	conducted	 ‘blind’	with	respect	 to	drug-assignment[7,	20],	148	

using	a	fully	counterbalanced	repeated-measures	within-subjects	design,	such	that	each	149	

animal	served	as	its	own	control	across	successive	‘linked’	sessions,	consisting	of	a	pre-150	

drug	session	(s1),	drug	session	(s2)	and	post-drug	session	(s3)	within	each	block	(Figure	151	

1A).	152	

	153	

	 Our	 second	 key	 finding	 was	 ‘silent	 learning’	 with	 low-dose	 muscimol.	154	

Representative	 swim-paths	 show	 Rat-G7207	 treated	 with	 muscimol	 searching	155	
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appropriately	on	 s1,	but	 swimming	all	 over	 the	pool	on	s2	without	memory	of	 the	 s1	156	

platform	location	until	 it	eventually	 found	the	new	escape	 location	after	>60	s;	on	the	157	

following	drug-free	 s3,	 this	rat	 searched	successfully	 in	a	 focused	zone	around	 the	 s2	158	

location	 (Figure	 3A,	 panel	 with	 pool	 shaded	 blue,	 note	 multiple	 crossings	 of	 the	 s2	159	

location	on	s3).	This	pattern	of	searching	behaviour	implies	that	memory	encoding	was	160	

intact	 during	 s2	 under	 muscimol,	 despite	 memory	 expression	 being	 blocked.	161	

Representative	paths	of	other	rats	show	respectively:	good	memory	for	each	previous	162	

session	 for	 aCSF;	 good	memory	 retrieval	 but	 no	 new	 learning	 under	 D-AP5;	 and	 no	163	

memory	 retrieval	or	new	 learning	under	CNQX.	Quantitatively,	we	observed	 a	double	164	

dissociation	between	the	impact	of	the	three	drugs	on	memory	encoding	and	retrieval	165	

(Figure	3B;	 two-way	ANOVA:	 significant	Drug	×	 Sessions	 interaction:	 F6,90	 =	 3.65,	 p	 =	166	

0.003).	 This	 statistical	 interaction	 justified	 separate	 analyses	 of	 each	 drug	 condition	167	

compared	to	aCSF	vehicle,	as	well	as	planned	comparisons	to	chance-level	performance.	168	

	169	

	 Vehicle	sessions	(aCSF)	showed	good	above	chance	memory	(chance	=	4%,	dotted	170	

line)	across	all	three	sessions	(Figure	3B,	black	bars;	Data	S3).		With	low-dose	muscimol,	171	

the	 animals	were	 at	 chance	 on	 s2	with	 the	 animals	 failing	 to	 remember	 the	 previous	172	

session,	 but	 above	 chance	 for	 the	 location	 trained	 under	 the	 drug	 on	 s2	when	 tested	173	

during	 trial	1	of	 s3	 (note	U-shaped	 function	 in	Figure	3B;	Data	S3).	That	 is,	 low-dose	174	

muscimol	was	permissive	for	new	encoding	despite	causing	a	complete	block	of	memory	175	

retrieval.	The	opposite	pattern	prevailed	with	D-AP5,	with	above	chance	retrieval	of	s1	176	

on	 trial	1	of	 s2,	but	 chance	performance	during	 trial	1	of	s3.	With	CNQX,	 the	animals’	177	

memory	of	s1	displayed	on	trial	1	of	s2	and	their	memory	of	s2	on	trial	1	of	s3	were	both	178	

at	chance.	Thus,	CNQX	treated	rats	could	neither	retrieve	nor	encode.	179	

	180	

	 In	this	protocol,	the	animals	‘update’	their	memory	during	each	session	-	akin	to	181	

the	concept	of	‘headed	records’	in	which	human	subjects	often	remember	the	last	thing	182	

that	 happened	 but	 tend	 to	 overwrite	 earlier	 events[21].	 Updating	 should	 only	 be	183	

observed	if	new	learning	occurs	on	s2;	thus,	a	distinct	pattern	of	drug	effects	is	expected	184	

on	s3.	The	specific	prediction	 is	 that	D-AP5	and	CNQX	would	block	memory	updating,	185	

whereas	aCSF	and	low-dose	muscimol	would	both	be	permissive	of	memory	overwriting.	186	

We	quantified	the	swim	search	pattern	on	s3	with	respect	to	the	proportion	of	time	spent	187	

in	the	correct	zone	for	s1	(i.e.	2	sessions	back;	Figures	3C,D)	and	compared	these	values	188	
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to	those	for	s2	(1	session	back).	The	overall	ANOVA	was	thus	a	2	×	4	analysis	for	the	time	189	

spent	searching	during	s3	 in	the	 locations	used	on	s1	and	on	s2	as	a	 function	of	 the	4	190	

drugs,	revealing	a	highly	significant	Session-Memory	×	Drug	interaction	(F3,45	=	7.35,	p	=	191	

0.001).	Unpacking	 this	 triple	 interaction	using	planned	comparisons	revealed	 that	 the	192	

average	level	of	memory	measured	on	s3	after	CNQX	or	D-AP5	during	s2	was	higher	for	193	

the	s1	location	than	for	s2	(i.e.	minimal	updating);	whereas,	with	aCSF	and	muscimol,	the	194	

opposite	pattern	prevailed.	The	orthogonal	comparison	for	this	contrast	was	significant,	195	

but	a	graphically	simpler	analysis	is	to	look	at	the	absolute	level	of	memory	for	the	s1	196	

location	that	is	expressed	during	s3	(Figure	3C).	The	ANOVA	for	these	data	also	showed	197	

a	significant	drug	effect	(F3,45	=	3.64,	p	<	0.05).	As	predicted,	memory	for	the	s1	location	198	

after	aCSF	or	muscimol	had	been	 infused	on	s2	was	 lower	than	when	D-AP5	or	CNQX	199	

were	infused	(F1,45	=	8.65,	p	<	0.01;	Figure	3C).	This	successful	updating	under	muscimol	200	

on	s2	argues	against	the	retrieval	deficit	displayed	under	the	drug	on	s2	being	a	mere	201	

‘performance’,	 ‘off-target’	 or	 'state-dependent'	 effect,	 as	 it	 is	 unclear	 how	such	 effects	202	

could	selectively	affect	retrieval	but	not	memory	encoding.	Illustrative	paths	are	shown	203	

following	the	administration	of	aCSF	(successful	updating)	and	CNQX	(no	updating)	on	204	

different	s2	sessions	(Figure	3D).	205	

	206	

	 A	 concern	was	 that	 intact	memory	 encoding	with	 low-dose	muscimol	 is	 some	207	

artefact	 of	 differential	 spread	 of	 the	 drug,	 the	 most	 likely	 possibility	 being	 that	 the	208	

infusion	was	restricted	to	a	small	region	of	the	dorsal	HPC.	This	might	have	been	sufficient	209	

to	disrupt	 cell-firing	during	retrieval	 and	pattern	 completion,	but	 insufficient	 to	affect	210	

new	learning	within	a	larger	volume	of	unaffected	dorsal	and	intermediate	hippocampus.	211	

The	problem	with	this	interpretation	is	that	the	diffusion	of	D-AP5	and	CNQX	is	likely	to	212	

have	been	similar	to	that	of	muscimol	(MWs	=	197,	232	and	114	respectively),	and	thus	213	

new	encoding	should	also	have	occurred	for	these	drugs	-	which	it	did	not.	This	suggests	214	

that	our	deliberate	choice	of	a	2	µl	infusion	volume	achieved	substantial	spread	along	the	215	

longitudinal	axis.	Anticipating	this,	we	conducted	additional	electrophysiological	studies	216	

with	recording	in	the	intermediate	zone	of	the	longitudinal	axis	of	hippocampus	following	217	

infusion	of	muscimol	into	the	dorsal/septal	region	(infusion	2.5	mm	from	the	recording	218	

electrode,	Figure	S2B).	Inhibition	of	the	fEPSP	(Figures	S2C,E,	circa	23%))	was	slightly	219	

less	than	at	the	more	proximal	recording	site	(35%)	but,	importantly,	cell-firing	remained	220	

almost	completely	blocked	(circa	86%,	Figures	S2D,E).	We	also	attempted	to	look	at	drug	221	
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diffusion	directly	using	fluorescent	muscimol	[22].	The	analysis	of	3	animals	subject	to	222	

bilateral	2	μl	infusions	of	0.19	mM	fluorescent	muscimol	bodipy,	indicated	diffusion	along	223	

the	 longitudinal	 axis	 of	 up	 to	 3.5	 mm	 (Figure	 S2F,G),	 with	 minimal	 spread	 into	224	

retrosplenial	cortex	(RSC)	or	overlying	parietal	cortex.	But	this	measure	is	conservative	225	

as	the	molecular	weight	of	fluorescent	muscimol	(MW	=	607)	is	much	larger	than	that	of	226	

muscimol	itself	(MW	=	114),	and	it	is	more	lipophilic	by	virtue	of	the	fluorescent	label.	227	

	228	

	 A	third	but	unlikely	possibility	is	that	drug	diffusion	reaches	beyond	hippocampus	229	

to	retrosplenial	cortex,	long	implicated	in	spatial	memory[23].	On	this	view,	muscimol	in	230	

RSC	may	be	contributing	to	the	impaired	memory	retrieval.		We	had	hoped	that	data	on	231	

diffusion	of	fluorescent	muscimol	could	definitively	address	this	issue,	but	it	is	unclear	232	

how	this	account	would	could	explain	effective	new	memory	encoding	in	RSC.		Extensive	233	

diffusion	of	muscimol	itself	is	surely	unlikely	as	the	closely	packed,	myelinated	fibres	of	234	

the	overlying	alveus	and	corpus	callosum	would	restrict	this	from	happening.	As	in	our	235	

earlier	autoradiographic	and	regional	cerebral	blood	flow	studies	of	glutamate	receptor	236	

antagonists	 [15,	 24],	 there	 were	 non-spherical	 ‘rugby-ball’	 shaped	 diffusion	 volumes	237	

within	hippocampus,	also	observed	with	fluorescent	muscimol	[22].	Some	disruption	to	238	

cell-firing	in	RSC	might	nonetheless	contribute	to	the	retrieval	deficit	seen	with	muscimol	239	

and	 CNQX,	 possibly	 by	 affecting	 the	 translation	 of	 memory	 representations	 from	240	

allocentric	to	egocentric	to	enable	accurate	heading	to	the	remembered	escape	location.			241	

	242	

DISCUSSION	243	

	 The	 present	 findings	 point	 to	 a	 new	 concept	which	we	 shall	 refer	 to	 as	 ‘silent	244	

learning’	 -	 new	 memory	 encoding	 in	 the	 absence	 of	 cell-firing.	 	 Silent	 learning	245	

corresponds	 behaviourally	 to	 new	 episodic-like	 memory	 encoding	 in	 the	 absence	 of	246	

memory	retrieval.	 	We	suggest	that	this	can	sometimes	occur	if	LTP	induction	is	intact	247	

during	 cellular	 silence,	 allowing	 activity-dependent	 synaptic	 potentiation	 to	 encode	 a	248	

new	spatial	memory	as	a	distributed	pattern	of	potentiated	synapses	in	the	hippocampus	249	

(dentate,	CA3	and/or	CA1).	Cell-firing	would	not	always	be	necessary.	250	

		251	

	 From	a	behavioural	perspective,	the	concept	of	‘silent	learning’	is	distinct	from	the	252	

classical	concept	of	‘latent	learning’	which	refers	to	successful	learning	in	the	absence	of	253	

reward	[25].	Latent	learning	was	a	challenge	for	Hull’s	drive	reduction	theory[26]	which	254	
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supposed	that	animals	had	to	be	motivated	to	learn	(‘drive’)	and	that	stimulus-response	255	

connections	were	‘stamped-in’	by	‘drive-reduction’	following	reward.	Silent	learning	is	256	

different,	 being	 more	 consonant	 with	 Tolman’s	 ‘cognitive	 map’	 theory[25]	 which	257	

asserted	that	learning	could	occur	in	the	absence	of	reward,	resurrected	in	O’Keefe	and	258	

Nadel’s	theory	of	hippocampal	function[27].	259	

	260	

	 The	 distributed	 associative	 neural	 circuit	 of	 the	 hippocampus[28]	 has	 been	261	

proposed	to	operate	in	distinct	encoding	and	retrieval	modes	at	different	phases	of	the	262	

theta	rhythm[29].	We	reasoned	that	it	might	be	possible	to	realise	a	double	dissociation	263	

of	 the	 processes	 of	 memory	 encoding	 and	 retrieval	 as	 a	 function	 of	 task	 demands.		264	

Blocking	 NMDA	 receptor	 activation	 is	 permissive	 for	 memory	 retrieval	 but	 prevents	265	

encoding[9,	 12],	whereas	AMPA	 receptor	 inhibition	 blocks	 both[30].	 Our	new	 finding	266	

indicates	 that,	 even	 though	 memory	 retrieval	 fails	 to	 occur	 when	 cell-firing	 in	 the	267	

hippocampus	 is	 blocked	 by	 low-dose	 muscimol,	 new	 encoding	 can	 occur	 provided	268	

synaptic	 plasticity	 is	 intact	 and	 fast	 synaptic	 transmission	 only	 modestly	 affected.	269	

Although	 not	 accompanied	 by	 electrophysiological	 analysis,	 a	 previous	 behavioural	270	

pharmacology	 study	was	 also	 suggestive	 of	 such	 a	 possibility,	with	 spared	 ‘extinction	271	

learning’	being	observed	in	an	inhibitory	avoidance	task	during	intrahippocampal	low-272	

dose	muscimol	 (approximately	 twice	 as	 high	 as	we	 used[31]).	 Impaired	 retrieval	 has	273	

been	shown	to	occur	with	higher	doses	of	muscimol[32],	but	the	possibility	of	intact	or	274	

impaired	learning	was	not	investigated.	275	

	276	

	 The	qualification	is	the	possibility	of	acute	‘off-target’	alteration	of	neural	circuits	277	

(e.g.	RSC)	that	were	not	directly	enveloped	by	the	muscimol	infusion.	Alterations	in	the	278	

level	 of	 learning-associated	 immediate	 early-gene	 expression	 in	 RSC	 are	 seen	 as	 a	279	

network	effect	following	lesions	of	the	hippocampal	formation	[23].	We	suspect	instead	280	

that	 enhanced	 inhibition	 targets	 the	 complexity	 of	 inhibitory	 circuitry	 in	281	

hippocampus[16]	 coupled	 to	 dynamic	 changes	 of	 parvalbumin-positive	 GABAergic	282	

inhibition	associated	with	 learning[19].	Our	 findings	 suggest	 that	 'on-target'	 effects	of	283	

muscimol	are	a	more	likely	explanation.	284	

	285	

	 From	 a	 physiological	 perspective,	 this	 interpretation	 requires	 that	 synaptic	286	

plasticity	 can	 sometimes	occur	 in	 the	absence	of	 cell-firing.	 Indeed,	 this	may	be	more	287	
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frequent	 than	generally	realised	and	has	been	considered	since	the	original	papers	on	288	

LTP	[33,	34].	The	conceptually	interesting	idea	is	that	a	network	may	sometimes	be	able	289	

to	change	the	pattern	of	synaptic	weights	on	its	input	synapses	'secretly'	from	neurons	290	

further	downstream.	Our	electrophysiology	focused	on	the	perforant	path	input	to	the	291	

dentate	gyrus,	but	a	similar	 'silent	 learning'	effect	may	occur	on	the	entorhinal	cortex	292	

layer	 III	 input	 to	CA1	and	on	the	entorhinal	 cortex	 layer	 II	 input	 to	CA3;	 it	would	not	293	

necessarily	require	activation	of	recurrent	circuitry	in	CA3.	Understanding	the	detailed	294	

physiological	mechanism	was	not	the	primary	purpose	of	this	initial	study,	but	comments	295	

relevant	 to	 such	 a	 future	 project	 are	 appropriate.	 First,	 the	 complexities	 of	 dendritic	296	

inhibition	in	the	hippocampus	might	allow	for	a	failure	of	memory	retrieval	to	be	caused	297	

by	a	block	of	cell-firing	due	to	muscimol	activation	of	GABAA	receptors	expressed	on	the	298	

cell	 soma	 of	 hippocampal	 excitatory	 neurons	 innervated	 by	 parvalbumin-positive	299	

GABAergic	interneurons[16,	17,	35].	An	impact	of	GABAA	receptors	in	the	dendrites	may,	300	

however,	reflect	a	differential	effect	on	tonic	rather	than	phasic	inhibition[36,	37],	arising	301	

because	 low-dose	muscimol	 acts	 preferentially	 (but	 not	 exclusively)	 at	 extra-synaptic	302	

GABAA	 sites	mediating	 tonic	 inhibition.	 A	modest	 increase	 in	 tonic	 inhibition	may	 be	303	

permissive	 for	 postsynaptic	 backpropagating	 dendritic	 spikes[1,	 2,	 38].	 A	 further	304	

possibility	is	that	augmented	GABAA	mediated	inhibition	in	dendrites	may	leave	intrinsic	305	

changes	 in	dendritic	membrane	potential	unaffected,	 and	 these	are	now	known	 to	be	306	

permissive	 for	 place-cell	 formation[39]	 and	 behavioural	 time-scale	 synaptic	307	

plasticity[40].	Addressing	 these	distinct	possibilities	will	not	be	easy	 in	 freely-moving	308	

animals.	 The	 retrieval/encoding	 dissociation	 might	 be	 examined	 optogenetically	 or	309	

chemogenetically[41,	42]	using	appropriate	promoter	lines	that	would	allow	differential	310	

targeting	 of	 distinct	 GABAergic	 neurons.	 Interestingly,	 the	 possibility	 that	 changes	 in	311	

excitation-inhibition	balance	is	relevant	to	unmasking	latent	memory	has	also	recently	312	

been	studied	in	humans[43].	313	

	314	

	 To	 summarise,	 the	 phenomenon	 of	 ‘silent	 learning’	 in	 the	 awake	 animal	 is	315	

compatible	 with	 dendritic	 computation	 and	 the	 complexity	 of	 inhibitory	 network	316	

connectivity	in	the	hippocampus.	It	suggests	that	synaptic	plasticity	can	lurk	cryptically	317	

under	 conditions	 in	which	 the	network	expression	of	new	memory	trace	 formation	 is	318	

prevented	by	somatic	 inhibition.	 It	has	not	escaped	our	notice	that	such	 learning	may	319	
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occur	more	often	than	is	generally	appreciated	and,	indeed,	be	a	characteristic	of	several	320	

aspects	of	cognitive	learning.	321	

	 	322	
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FIGURE LEGENDS 483	

	484	

Figure	1.	A	Novel	Watermaze	Protocol	to	Dissociate	Encoding	and	Retrieval	485	

(A)	 The	 experimental	 design	 with	 animal	 handling,	 drug-cannula	 implantation,	 DMP	486	

training	 for	 8–10	 sessions,	 followed	 by	 the	 series	 of	 3	 linked	 sessions	 for	 the	 drug	487	

infusions	interspersed	with	an	additional	interleaved	training.			488	

(B)	Aerial	drawings	of	the	watermaze	across	3	linked	sessions	(repeated	across	sessions	489	

for	different	drug	conditions),	with	exemplar	daily	locations	of	the	single	escape	platform	490	

(black	circles;	see	Figure	S1).	The	location	on	a	specific	session	1	(s1;	black	continuous	491	

circle	in	NW	quadrant)	and	that	on	the	next	session	2	(s2;	black	circle	in	SW	quadrant)	492	

are	each	shown,	with	the	dotted	line	in	black	reflecting	where	the	platform	was	available	493	

after	60s,	and	the	continuous	 line	showing	 it	being	available	(60–120	s;	it	was	always	494	

hidden	 below	 the	water).	 The	 black	 filled	 parts	 of	 the	 cartoons	 are	 the	 platforms	 (in	495	

proportion)	and	the	surround	black	circle	is	the	associated	analysis	zone	(20	cm	diameter,	496	

centred	on	each	location,	4%	of	area	of	pool).	The	location	used	on	s1	is	shown	for	s2	as	497	

a	red	dotted	line	(the	'memory'	location	of	s1,	but	not	actually	used	on	s2;	likewise	for	s3	498	

with	respect	to	s2).	Note	the	platform	always	stayed	in	the	same	location	for	all	4	trials,	499	

and	was	available	immediately	for	escape	on	trials	2–4.		500	

(C)	Atlantis	Platform	that	is	unavailable	for	the	first	60	s	of	trial	1	of	each	session,	but	501	

then	rises	to	near	the	water	surface.	Cartoons	below	(dotted	and	continuous	line)	are	as	502	

in	panel	B.		503	

(D)	A	series	of	3	linked	sessions	when	drug	(or	aCSF)	is	administered	30	min	(CNQX)	or	504	

40	min	(muscimol	and	D-AP5)	before	s2.	The	same	locations	are	displayed	as	in	(B).	Note	505	

that	the	first	60	s	of	trial	1	of	s2	offered	the	opportunity	to	retrieve	the	memory	of	s1	(red	506	

continuous	line),	while	trials	1-4	of	s2	are	the	opportunities	for	new	memory	encoding[of	507	

black	 continuous	 circle	 in	 SW	 (south-west)	 quadrant].	 When	 encoding	 was	 blocked	508	

during	s2	by	a	drug,	preventing	updating,	s3	may	have	offered	the	opportunity	to	retrieve	509	

the	location	on	s1	(red	dotted	line).		510	

(E)	Mean	first-crossing	latencies	on	trials	1-4	of	multiple	interleaved	training	sessions.	511	

These	training	sessions	are	interspersed	between	the	successive	3	linked	sessions	(grey	512	

bars).	Means	±	SEM.	513	

	514	
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Figure	2.	Impact	and	Time-Course	of	Distinct	Drugs	on	Hippocampal	Physiology	in	515	

vivo		516	

(A)	Differential	impact	of	2	μl	infusions	of	muscimol	(0.38	nmoles,	orange),	D-AP5	(60	517	

nmoles,	pink)	and	CNQX	(6	nmoles,	blue)	on	the	early-rising	slope	of	evoked	fEPSPs	in	518	

the	dentate	gyrus	to	perforant	path	stimulation,	normalised	to	the	pre-drug	baseline	(n	=	519	

5	for	all	conditions).	Arrow	points	to	the	drug	infusion;	yellow	shading	indicates	when	520	

the	behavioural	test	is	applied	(40–70	min	later).		521	

(B)	Normalised	averaged	fEPSP	values	for	baseline,	end	of	test	period	(after	test),	and	3	522	

hr	post-infusion	(end),	normalization	to	aCSF	baseline.		523	

(C	and	D)	Normalized	changes	in	the	population	spike	(PS).		524	

(E)	Impact	of	aCSF,	muscimol	and	D-AP5	on	the	induction	of	LTP	(yellow	lightning	marks),	525	

with	the	fEPSP	slope	re-normalised	with	respect	to	the	pre-tetanus	baseline	(10	min)	and	526	

compared	to	the	corresponding	drug-treated	group	that	was	not	subject	to	tetanisation.	527	

A	key	new	finding	is	intact	LTP	induction	under	low-dose	muscimol	as	well	as	aCSF,	but	528	

not	 D-AP5.	 Yellow	 shading	 reflects	 the	 daily	 timing	 and	 duration	 of	 the	 behavioural	529	

experiment.	LTP	data	plotted	for	that	time.	For	absolute	PS	data,	see	Figure	S3.	530	

(F)	Averaged	LTP	data.		531	

(G)	Schematic	of	stimulating	and	recording	electrodes,	and	drug	cannula	locations	of	rat	532	

brain	in	vivo.	Detail	in	Figure	S2.	Paired	two-tailed	t	test	(versus	chance):	**p	<	0.01,	****p	533	

<	0.0001.	Means	±	SEM.			534	

	535	

Figure	 3.	 Impact	 of	 Distinct	 Pharmacological	 Manipulations	 on	 Encoding	 and	536	

Retrieval,	and	on	Memory	Updating		537	

(A)	 Illustrative	paths	of	representative	rats	during	trial	1	of	3	 linked	sessions	 for	all	4	538	

drug	conditions.	Black	platform	=	location	that	session;	continuous	red	line	=	location	on	539	

previous	session;	dotted	red	line	=	platform	location	two	sessions	back;	small	green	circle	540	

=	start	of	swim	path;	small	blue	circle	=	end	of	swim-path;	dotted	blue	line	=	latter	part	541	

of	the	swim	path,	not	calculated	in	the	memory	retrieval	data,	after	the	Atlantis	Platform	542	

became	 available.	 The	 key	 finding	 of	 silent	 learning	 is	 shown	 for	 the	 representative	543	

muscimol	treated	animal.	Note	random	search	all	over	the	watermaze	on	s2	(during	the	544	

drug;	middle),	 but	 focused	 search	 at	 the	 s2	 location	 on	 s3	 (right).	With	 aCSF,	 the	 rat	545	

always	searches	at	or	very	close	to	the	previous	session	location;	with	D-AP5,	searching	546	
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is	optimal	on	 s2	but	at	 chance	on	s3;	with	CNQX,	 the	 rat	 fails	 to	show	either	memory	547	

retrieval	or	new	encoding.			548	

(B)	Impact	of	hippocampal	drug	infusion	on	encoding	and	retrieval.	Quantitative	measure	549	

of	search	in	the	zone	around	a	platform	location	on	each	trial	1	of	3	linked	sessions,	with	550	

drug	administered	on	s2	(drug	conditions	were	counterbalanced	and	given	blind).	Search	551	

time	 is	 plotted	 for	 the	 platform	 location	 of	 the	 preceding	 session.	 Note	 stable	 above-552	

chance	performance	for	s1–s3	for	aCSF	condition	(black	bars),	but	a	different	pattern	in	553	

each	of	 the	 three	drugs.	Following	 the	overall	Drugs	×	Sessions	 interaction	 (see	 text),	554	

separate	ANOVAs	were	conducted	for	each	drug	over	s1–s3	(muscimol:	F1,45	=	4.49,	p	=	555	

0.029;	D-AP5:	F1,45	=	4.53,	p	=	0.007;	CNQX:	F1,45	=	18.37,	p	=	0.001).	The	key	finding	was	556	

chance	performance	in	muscimol	condition	on	s2	but	recovery	during	retrieval	on	s3.		557	

(C)	Impact	of	hippocampal	drug	infusion	on	memory	updating.	Dissociable	impact	of	the	558	

drugs	on	memory	updating	as	measured	on	s3.	 In	 the	aCSF	and	muscimol	 conditions,	559	

memory	of	s1	during	s3	was	at	chance	(successful	updating)	and	significantly	below	that	560	

observed	for	D-AP5	and	CNQX	which	are	both	above	chance	(no	updating).		561	

(D)	Representative	search	paths	on	trial	1	of	s3	reflecting	updating	(aCSF:	path	frequently	562	

crosses	 continuous	 red	 line	of	s2)	or	no	updating	 (CNQX:	path	 frequently	 crossed	 the	563	

dotted	red	line	of	s1).	Paired	two-tailed	t	test	(versus	chance):	**p	<	0.01.	4%	chance	=	564	

ratio	of	surface	areas	of	search	zone	and	pool	area.	Means	±	SEM.	565	

	566	
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Rats	580	

All	experiments	were	performed	on	adult	male	Lister	Hooded	Rats	(200–300	g	on	arrival;	581	

Charles	 River,	 UK)	 in	 accordance	 with	 the	 United	 Kingdom	 Home	 Office	 Animal	582	

Procedures	Act	(1986)	conducted	under	a	Project	Licence	(PPL	60/4566)	held	by	RGM	583	

Morris.	 They	 were	 kept	 in	 a	 vivarium	 in	 the	 same	 building	 on	 a	 12	 hr	 lights	 on/off	584	

schedule,	in	group	cages	of	4	rats	per	cage,	with	free	access	to	food	and	water.	585	

	586	

METHOD	DETAILS	587	
	588	

Behavioural	apparatus	and	the	Atlantis	Platform	589	

The	watermaze	is	an	apparatus	in	which	a	variety	of	distinct	behavioural	protocols	can	590	

be	trained	[44].	It	consists	of	a	large	pool	of	water	(2	m	in	diameter)	from	which	rodents	591	

learn	to	escape	onto	a	hidden	platform	whose	top	surface	is	1.5	cm	beneath	the	water	592	

surface	(Supplementary	Figure	S1A).	Latex	solution	is	added	to	render	the	water	cloudy	593	

and	thereby	hide	the	escape	platform.	Water	temperature	is	regulated	at	25°C	such	that	594	

escape	is	desirable,	but	the	procedure	is	not	stressful	as	this	is	only	12–13°C	lower	than	595	

body	temperature.	596	

	597	

While	many	studies	have	deployed	a	reference	memory	procedure	in	which	the	escape	598	

platform	remains	in	the	same	location	across	days,	an	alternative	is	the	so-called	‘delayed	599	

matching	 to	 place’	 (DMP)	 protocol	 [7]	 in	which	 the	 escape	 platform	moves	 from	one	600	

location	to	another.	This	‘everyday	memory’	protocol,	with	repeated	training	across	days	601	

and	 weeks,	 requires	 the	 integrity	 of	 the	 septal	 (dorsal)	 and/or	 intermediate	602	

hippocampus[45].	 Lesions	 placed	 at	 different	 positions	 along	 the	 longitudinal	 axis	603	

damaging	up	to	90%+	or	less	than	20%+	of	the	hippocampus	have	indicated	that	learning	604	

is	mediated	via	dorsal	and	intermediate	hippocampus,	with	intact	ventral	hippocampal	605	

tissue	being	 insufficient	 for	effective	day-to-day	 learning.	A	key	analytic	 feature	of	 the	606	

DMP	 protocol	 is	 that	 it	 allows	 a	 clean	 dissociation	 between	 memory	 encoding	 and	607	

memory	retrieval.	Performance	is	typically	characterised	by	a	long	escape	latency	on	trial	608	

1	 as	 the	 animal	 searches	 for	 the	 platform	 whose	 location	 that	 day	 is	 still	 unknown,	609	

searching	initially	at	the	previous	session’s	location,	followed	by	rapid	memory	encoding	610	

during	the	30	s	period	out	of	the	water	followed	by	relatively	direct	paths	to	that	day’s	611	

location	on	trials	2–4.	Four	trials	per	day	are	used	to	ensure	that	an	effective	memory	is	612	



 Rossato et al - 20  

formed	of	the	daily	location	that	can	be	recalled	during	trial	1	of	the	next	session.	The	613	

intervals	between	trials	can	be	varied	systematically,	with	the	trial	1	to	trial	2	interval	614	

being	20	min	in	this	study,	while	trial	2	to	trial	3,	and	trial	3	to	trial	4	was	kept	short	at	615	

no	more	than	5	s	after	the	30	s	period	on	the	platform.	In	this	way	also,	the	rapidly	learned	616	

strategy	of	learning	where	to	go	in	each	session	(one	session	per	day)	is	maintained,	even	617	

in	the	face	of	interventions	such	as	the	application	of	drugs.	A	large	number	of	different	618	

platform	locations	can	be	used	across	sessions,	some	on	an	outer	virtual	ring	and	the	619	

others	 on	 the	 inner	 ring	 (Supplementary	 Figure	 S1B).	 This	 distribution	 of	 possible	620	

locations	(n=24	in	this	study)	encourages	widespread	searching.		621	

	622	

Memory	retrieval	is	displayed	as	preferential	searching	on	trial	1	of	each	session	in	the	623	

location	 that	 the	 escape	 platform	had	 occupied	 during	 the	previous	 session.	 This	was	624	

quantified	 by	 running	 trial	 1	 of	 each	 session	as	 a	 rewarded	 probe	 test,	 using	 an	 ‘on-625	

demand’	 or	 ‘Atlantis’	 platform	 [8,	 46]	 (Supplementary	 Figure	 S1C)	 which	 remained	626	

inaccessible	for	60	s.	This	consists	of	a	12	cm	diameter	escape	platform	mounted	on	a	627	

stainless-steel	spindle,	initially	at	the	bottom	of	the	pool	and	thus	unavailable,	but	which	628	

can	be	computer	controlled	to	rise	to	within	1.5	cm	of	the	water	surface	on-demand.	By	629	

making	this	platform	unavailable	for	60	s	on	trial	1,	the	trial	serves	as	a	memory	‘probe’	630	

for	the	previous	session;	the	platform	then	rises,	the	animals	find	it	and	then	climb	onto	631	

it	in	the	usual	way.	632	

	633	

An	 overhead	 camera,	 associated	 DVD	 recorder	 and	 on-line	 analysis	 software	 co-634	

developed	 by	Watermaze	 Software	 (Edinburgh)	 and	 Actimetrics	 (Evanston,	 USA)	 are	635	

used	to	monitor	the	path	taken,	and	measure	latency,	path-length	etc.	During	the	initial	636	

period	of	60	s	of	trial	1,	two	separate	measures	of	performance	were	computed:	637	

	638	

• First-crossing latency: is the time in seconds until the animal first crosses the correct 639	
location (12 cm diameter) where the platform will become available. As the platform is 640	
not actually available until 60 s has passed, this is not strictly-speaking an ‘escape 641	
latency’ (the animal keeps swimming), but it serves as a ‘surrogate’ of escape latency. 642	
This measure was also computed for all 4 trials of the session. 643	

• Memory search tendency: The second measure is computed from the time spent 644	
swimming in a virtual zone of 40 cm diameter centred on the location of the platform 645	
during the previous session. This time is normalised with respect to the full 60 s of the 646	
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trial, and represented as a percentage relative to the 4% area of the pool that the zone 647	
occupies. This 4% level represents ‘chance’ if the animal were to be swimming around 648	
the pool randomly. 649	
 650	

This	DMP	task	offers	analytic	advantages	over	the	reference	memory	protocol.	First,	the	651	

learning	of	several	different	platform	locations	can	be	studied.	Second,	once	the	animals	652	

have	received	a	number	of	 initial	 training	sessions	(8–10	sessions),	memory	encoding	653	

and	storage	takes	place	in	one	session.	Third,	reversible	interventions	can	be	introduced	654	

(such	 as	 intrahippocampal	 drug	 infusions,	 conducted	 blind)	 using	 a	 within-subjects,	655	

repeated	measures	design	–	with	all	the	associated	advantages	of	both	reduced	variability	656	

and	reduced	use	of	animals.		657	

	658	

Stereotactic	surgery		659	

Anaesthesia	was	induced	using	isoflurane	(induction,	5%;	maintenance,	1–2%;	air-flow,	660	

1	 l/min)	(Zoetis,	USA).	The	animals	were	placed	 in	the	stereotactic	 frame	(David	Kopf	661	

Instruments,	USA).	Infusion	guide	cannulae	(26	gauge,	4.4	mm	length,	C315,	Plastics	One,	662	

USA)	with	stylets	(33	gauge)	that	protruded	0.5	mm	below	the	end	of	the	cannula	were	663	

inserted	 into	 the	 hippocampus	 bilaterally	 through	 small	 holes	 drilled	 into	 the	 skull.	664	

Cannula	implantation	coordinate	for	the	hippocampus	is	as	follows:	anterior-posterior	665	

(AP)	 from	bregma,	 –4.00	mm;	mediolateral	 (ML),	 ±3.00	mm;	 and	 dorsal-ventral	 (DV)	666	

from	 the	 dura,	 –2.66	 mm	 (Paxinos	 G,	Watson	 C	 (2007)	 The	 Rat	 Brain	 in	 Stereotaxic	667	

Coordinates,	Ed	6.	Amsterdam:	Academic	Press/Elsevier).	Carprofen	(0.08	ml/kg	body	668	

weight;	 Zoetis)	was	 administered	 by	 subcutaneous	 injection	 at	 the	 end	 of	 all	 surgical	669	

procedures.	Animals	recovered	on	a	heating	pad	until	normal	behaviour	resumed.	All	rats	670	

were	allowed	a	recovery	period	of	at	least	7	days	for	them	to	regain	their	pre-surgery	671	

weights	before	behavioural	testing.	672	

	673	

Drugs	674	

With	 respect	 to	 the	drugs,	phosphate-buffered	artificial	 cerebrospmal	 fluid	 (aCSF)	 (in	675	

mM:	150	Na+,	3	K+,	1.4	Ca2+,	0.8	Mg2+,	155	Cl–,	0.2	H2PO4–,	0.8	HPO42–,	pH7.2)	was	used	as	676	

the	infusion	vehicle	and	for	control	infusions.	Drug	concentrations	for	infusions	were:		677	

	678	

• 0.19 mM of the GABAA receptor agonist muscimol (C4H6N2O2; Tocris, UK) 679	
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• 30 mM of the competitive NMDA receptor antagonist D-AP5 (C5H12NO5P; Tocris) 680	
• 3 mM of the competitive AMPA/kainate receptor antagonist CNQX (disodium 681	

salt; C9H2N4O4Na2.H2O; Tocris)  682	
 683	

The	pH	of	the	drug	solutions	was	adjusted	to	7.2	by	addition	of	1	M	NaOH	solution	(for	D-684	

AP5),	or	of	concentrated	phosphoric	acid	(for	CNQX).	Both	aCSF	and	drug	solutions	were	685	

prepared	in	larger	quantities,	divided	into	small	aliquots,	and	kept	frozen	at	–20°C	until	686	

they	used.	We	facilitated	the	solution	of	CNQX	by	sonification.	Note	higher	concentrations	687	

of	muscimol	were	used	in	pilot	studies.	688	

	689	

Behavioural	training	690	

We	used	male	Lister	Hooded	rats	(n	=	16,	250+	g)	for	the	behavioural	aspect	of	this	study.	691	

They	were	stereotaxically	implanted	with	bilateral	guide	cannulae	targeting	the	dentate	692	

gyrus	in	the	dorsal	hippocampus.	After	recovery	from	surgery,	they	were	trained	on	the	693	

DMP	task	over	8–10	sessions	whereupon	they	showed	the	usual	striking	decline	in	escape	694	

latency	between	trials	1	and	2	of	a	session	(Data	S1)	and	above	chance	memory	of	the	695	

previous	session’s	location	during	trial	1.	696	

	697	

Thereafter,	 using	 a	 counterbalanced	 Latin-Square	 design,	 we	 examined	 the	 impact	 of	698	

aCSF,	muscimol,	D-AP5	and	CNQX	on	performance	in	the	DMP	task.	The	16	animals	were	699	

all	used	as	their	own	controls	(i.e.	every	animal	received	each	drug	condition	on	different	700	

sessions)	with	¼	of	the	group	(i.e.	4	animals)	being	subject	to	any	one	drug	on	each	drug	701	

session.		702	

	703	

For	microinfusion	of	drugs,	the	rats	were	habituated	to	the	experimental	procedure	of	704	

injection	for	several	days	before	the	drug	sessions	in	order	to	minimise	stress.	The	stylets	705	

in	the	guide	cannulae	were	replaced	by	two	single	infusion	cannulae	(33	gauge,	Plastics	706	

One)	 connected	 to	 two	10	µl	microsyringes	 (Hamilton,	USA)	 in	a	microinfusion	pump	707	

(World	Precision,	USA)	via	 flexible	plastic	 tubing	 filled	with	Fluorinert	(3M,	USA).	The	708	

tips	of	infusion	cannulae	projected	0.5	mm	below	the	tip	of	the	guide	cannulae.	The	drugs	709	

were	bilaterally	infused,	in	a	volume	of	2	µl	per	hemisphere,	over	a	4	min	period	with	a	2	710	

min	period	after	drug	infusion	before	the	infusion	cannulae	were	replaced	with	stylets.	711	

Rats	 received	 drug	 injection	 30	 min	 in	 the	 case	 of	 CNQX	 and	 40	 min	 in	 the	 case	 of	712	
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muscimol	and	D-AP5	prior	to	the	start	of	training,	and	both	30	and	40	min	(for	different	713	

animals)	 for	 aCSF	 –	 this	 interval	was	 based	 on	 data	 from	 in	 vivo	 electrophysiological	714	

recordings.	715	

	716	

Drug	 sessions	only	occurred	every	4th	 session	as	 the	 test	 sessions	were	 conducted	as	717	

follows	 (Figure	 1A).	 First,	 each	 set	 of	 sessions	 consisted	 of	 three	 successive	 sessions	718	

(called	3	linked	sessions)	that	are	referred	to	as	session	1,	session	2	and	session	3	(s1,	s2	719	

and	s3,	respectively).	The	nomenclature	is	potentially	confusing,	because	these	3	linked	720	

sessions	were	then	repeated	according	to	requirements	of	the	Latin-Square	design.	Each	721	

repetitive	3	 linked	sessions	always	consisted	of	s1,	s2	and	s3	and	the	resulting	scores	722	

were	concatenated	in	Excel	file	until	we	had	tested	all	16	animals	in	each	condition.		723	

	724	

Second,	in	each	3	linked	sessions,	the	drugs	were	only	administered	on	s2.	In	this	way,	725	

we	could	examine	the	following:	726	

	727	

• Impact of the presence of a drug (within the hippocampus) on memory retrieval 728	
of the location of the platform on the previous session (i.e. memory for s1). 729	

• Impact of the drug on new learning (i.e. delivered during s2, but measured on s3 730	
in the then drug-free state). 731	

• Impact of the drug on ‘updating’ by comparing, on s3, the relative memory for 732	
s2 (the immediately preceding session) and that of s1 (two sessions before that). 733	

	734	

Third,	 these	3	 linked	 sessions	were	 separated	by	1+	 interleaved	 training	 session.	The	735	

object	of	 these	additional	 training	sessions	was	to	maintain	stability	of	the	strategy	of	736	

memory	retrieval	followed	by	new	encoding,	this	being	monitored	by	checking	that	the	737	

first-crossing	latency	remained	stable	throughout	the	experiment	(which	it	did).	The	data	738	

plotted	in	Figure	1E	shows	first	crossing	latencies	across	the	4	trials	of	each	interleaved	739	

training	session;	the	longest	time	was	spent	searching	on	trial	1	with	rapid	escape	to	the	740	

newly	learned	location	on	trials	2–4.	Representative	search	paths	on	critical	probe	trials	741	

are	shown	in	Figure	3A,	with	the	group	behavioural	data	for	the	critical	probe	sessions	742	

shown	in	Data	S3.	743	

	 	744	
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In	earlier	pilot	work	(behavioural	and	electrophysiological),	we	examined	the	impact	of	745	

higher	concentrations	of	muscimol	(0.5	mM	and	1.3	mM)	and	different	time-periods	after	746	

infusion	for	testing.	In	these	cases,	encoding	during	s2	and	long-term	potentiation	(LTP)	747	

induction	were	each	 impaired.	The	dissociation	between	 impaired	retrieval	and	 intact	748	

encoding	only	emerges	at	the	low-dose	of	muscimol	(0.19	mM).	749	

	750	

Main	Electrophysiology	Studies	751	

The	aim	of	the	electrophysiology	was	to	provide	data	to	guide	the	choice	of	drug	doses	752	

for	muscimol,	D-AP5	and	CNQX,	and	to	examine	excitatory	synaptic	transmission,	cell-753	

firing	 and	 LTP	 induction.	 	 We	 sought	 concentrations	 that	 definitively	 blocked	 LTP	754	

induction	with	D-AP5,	but	paradoxically	spared	LTP	induction	with	muscimol.	755	

	756	

Separate	animals	(male	Lister-Hooded	rats,	weighing	250+	g,	n=5	per	drug	condition)	757	

were	used	in	the	non-recovery	electrophysiology	studies.	These	animals	were	prepared	758	

for	 acute	 surgery	 in	 a	 stereotaxic	 apparatus	 (David	 Kopf	 Instruments)	 under	 non-759	

recovery	urethane	anaesthesia	(1.3	g/kg	body	weight;	Sigma-Aldrich,	USA),	with	the	first	760	

intraperitoneal	injection	given	during	brief	isofluorane	anaesthesia	(4%	isoflurane	in	0.8	761	

l/min	O2).	The	electrophysiology	studies	typically	lasted	6–8	hr,	with	the	initial	2	hr	being	762	

spent	 securing	 accurate	 placement	 of	 the	 stimulating	 and	 recording	 electrodes	 and	763	

cannula,	and	the	subsequent	4	hr	monitoring	field-potential	baseline	and	the	impact	of	764	

intrahippocampal	drug	infusions.	765	

	766	

Stimulating	and	recording	electrode	positions	are	shown	in	Figure	S2A.	The	stimulating	767	

electrode	 was	 a	 twisted	 bipolar	 Teflon-coated	 platinum-iridium	 electrode	 (20	 µm	768	

diameter,	 400	 µm	 coated	 diameter	 for	 each	 of	 the	 two	 single	 strands)	 aimed	 at	 the	769	

angular	bundle	of	the	perforant	path	(AP	0.0	mm	from	lambda;	ML	4.2	mm;	DV	2.15	mm	770	

from	dura).	The	recording	electrode	was	a	single	Teflon	coated	platinum-iridium	wire	771	

targeting	the	hilus	of	the	dentate	gyrus	(AP	4.08	mm	from	bregma;	ML	2.5	mm;	DV	3.5	772	

mm).	The	drug	cannula	was	a	28	gauge	stainless	steel	tube	whose	tip	was,	for	the	data	773	

reported	in	Figure	2,	stereotaxically	located	at	least	0.5	to	1.0	mm	(±	0.3)	mm	away	from	774	

the	recording	electrode	(AP	3.6	mm	from	bregma;	ML	2.6	mm;	DV	3.5	mm).	775	

	776	
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Conventional	 field-potential	 recordings	 were	made,	 with	 stimulation	 every	 20	 s,	 and	777	

these	monitored	and	calculated	on-line	using	EPS	software	[47].	In	response	to	biphasic	778	

200	µs	stimulus	pulses	of	circa	600–800	µA,	we	measured	both	the	early-rising	slope	of	779	

the	evoked	potential	by	linear	regression	over	several	points,	and	the	amplitude	of	the	780	

evoked	dentate	population	spike.	The	stimulus	 intensity	was	adjusted	to	secure	 initial	781	

population	 spike	 amplitudes	 of	 circa	 3–6	mV.	 LTP	 induction	 was	 attempted	 in	 some	782	

studies	using	a	high-frequency	stimulation	protocol.	This	tetanic	stimulation	consisted	of	783	

trains	of	50	pulses	(200	Hz),	and	repeated	3	times	at	an	interval	of	5	min	[47].	784	

	785	

Once	 acquired	 using	 suitable	 electrode	 placements,	 potentials	 typically	 remained	786	

relatively	stable	over	periods	of	up	to	3–4	hr,	with	a	small	upward	drift	of	the	population	787	

spike	(but	not	fEPSP)	that	rarely	exceeded	15%	over	this	long	period.	Animals	for	which	788	

the	potentials	were	unstable	were	discarded.	The	same	 long	time-period	stability	was	789	

observed	 when	 aCSF	 was	 infused	 into	 the	 dorsal	 hippocampal	 formation	 at	 a	 depth	790	

targeting	a	region	encompassing	the	stratum	moleculare	of	area	CA1.	A	volume	of	2	µl	791	

was	 infused	(0.5	µl/min)	that,	on	the	basis	of	previous	autoradiographic	data	[24,	48]	792	

would	be	expected	to	diffuse	throughout	the	entire	CA1,	CA3	and	dentate	gyrus	regions	793	

of	the	septal	(dorsal)	hippocampus.	794	

	795	

We	then	examined	the	impact	of	varying	doses	of	drugs.	We	examined	muscimol,	D-AP5	796	

and	CNQX.	 Intrahippocampal	 infusions	 (2	µl)	of	 artificial	 cerebrospinal	 fluid	 (aCSF,	 as	797	

vehicle),	muscimol	(0.19	mM),	D-AP5	(30	mM)	or	CNQX	(6-cyano-7-nitroquinoxaline-2,3-798	

dione,	3	mM)	were	made	into	the	dorsal	hippocampus	of	male,	Lister-hooded	rats	(n	=	20,	799	

n	 =	 5	 per	 drug	 condition,	 aCSF	 at	 pH7.2;	 experimenter	 blind	 to	 drug	 administered;	800	

urethane	anaesthesia;	perforant	path	stimulation,	recording	electrode	in	the	hilus	of	the	801	

dentate	gyrus,	drug	cannula	1.0	mm	distance,	Figures	2G	and	S2A;	Data	S2).	The	infusion	802	

volume	and	doses	were	varied	in	pilot	work,	settling	on	a	protocol	of	2	μl	for	all	three	803	

drugs	that	would,	on	the	basis	of	autoradiographic	data[13,	15,	48],	likely	affect	the	entire	804	

dorsal	 (septal)	 hippocampal	 formation,	 and	 extend	 to	 the	 intermediate	 region	 (to	805	

minimise	the	chances	of	a	false	negative	in	the	behavioural	study[45,	49]).	While	2	μl	is	806	

high,	such	a	volume	should	still	display	minimal	spread	beyond	hippocampus.	The	aim	807	

was	to	achieve:	808	

	809	
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• Shutting down cell-firing but with minimal effect on fast synaptic transmission 810	
and LTP induction (with low-dose muscimol – 0.38 nanomoles) 811	

• Blocking the induction of LTP with minimal effect on fast synaptic transmission 812	
or cell-firing (D-AP5 – 60 nanomoles). 813	

• Shutting down both fast synaptic transmission and cell-firing (CNQX – 6 814	
nanomoles) 815	

	816	

Effective	doses	for	D-AP5	and	CNQX	were	known	from	previous	work[9,	10],	but	checked	817	

to	 realize	 internal	 consistency.	 Concentrations	 of	 1.3,	 0.5	 and	 eventually	 0.19	mM	 of	818	

muscimol	were	examined	until,	at	the	lowest	dose,	the	dissociation	we	were	seeking	was	819	

secured	with	an	infusion	volume	of	2	µl.	Figure	2	shows	the	primary	results	(lowest	dose	820	

of	muscimol	–	0.38	nanomoles).		821	

	822	

Diffusion	of	muscimol	823	

Critically,	 we	 sought	 to	 measure	 the	 diffusion	 of	 low-dose	 of	 muscimol	 along	 the	824	

longitudinal	 axis	 of	 the	 hippocampal	 formation	 in	 two	 ways:	 electrophysiology	 and	825	

fluorescent	imaging.	As	outlined	in	the	main	text,	we	wondered	if	"silent	learning"	in	the	826	

presence	 of	muscimol	 could	 be	 an	 artefact	 of	minimal	drug	 diffusion	 from	 the	 site	 of	827	

dorsal	infusion	to	the	intermediate	region	of	the	hippocampal	formation.	This	could	leave	828	

intact	hippocampal	tissue	to	mediate	learning.	Accordingly,	further	electrophysiological	829	

experiments	were	conducted	with	the	same	low-dose	of	muscimol	(0.38	nanomoles),	but	830	

with	the	recording	electrode	location	in	the	intermediate	hippocampus	(AP,	–5.52	mm;	831	

ML,	3.8	mm;	DV;	4.1	mm)	-	a	distance	of	2.0	to	2.5	mm	from	the	infusion	cannula	(Figure	832	

S2B).	 Drug	 concentration	 and	 volume	 remained	 unchanged.	 Note	 that	 cell-firing	833	

remained	substantially	inhibited	in	this	intermediate	zone	of	the	hippocampus	(Figures	834	

S2C–S2E).	835	

	836	

While	these	data	reflect	the	impact	of	the	drug,	we	also	sought	direct	evidence	of	drug	837	

diffusion.	This	is	tricky	to	do	with	some	studies	conducting	radiography	using	tritiated	838	

(C14)	drugs,	others	using	 fluorescently	 labelled	compounds.	Muscimol	 is	available	as	a	839	

fluorescently	 labelled	 compound	 that	 can	 be	 visualised	microscopically,	 but	 it	 suffers	840	

from	the	difficulty	that	the	molecular	weight	is	much	higher	(607	instead	of	114)	and	may	841	

be	more	"sticky"	with	respect	to	diffusion	in	aCSF.	Accordingly,	it	is	likely	a	conservative	842	
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estimate	of	diffusion	but	 is	 at	 least	 a	direct	measure.	Fluorescently-labeled	muscimol-843	

bodipy	dissolved	in	aCSF	(0.19	mM;	Hello	Bio,	UK)	was	used	to	analyze	the	distribution	844	

profile	 of	 fluorescent	 muscimol	 40	 min	 after	 its	 bilaterally	 infusion	 into	 the	 dorsal	845	

hippocampus.	Cannulae	positions	and	the	drug	infusion	procedure	were	same	as	in		the	846	

main	behavioural	experiment.	Brains	were	removed	and	shock-frozen	on	powdered	dry	847	

ice,	 and	 50-μm-thick	 coronal	 sections	 were	 acquired	 with	 a	 cryostat	 (CM1900,	 Leica	848	

Biosystems,	 Germany),	 and	 mounted	 on	 Silane-coated	 glass	 slides.	 Bright	 field	 and	849	

fluorescent	images	of	serial	sections	equally	spaced	100	μm	were	taken	with	a	BZ-X700	850	

Microscope	(Keyence,	Japan).	Fluorescent	images	in	grayscale	were	shown	as	arbitrarily	851	

assigned	color	display	mode	(pseudocolor)	according	to	their	gray	levels	within	a	range	852	

of	0–90[arbitrary	units	 (AU)]	and	a	3D	 image	 showing	 the	distribution	of	 fluorescent	853	

signal	was	reconstructed	 from	serial	sections	using	a	Metamorph	software	(Molecular	854	

Devices,	USA).	Overlaid	images	of	bright-field	and	pseudocolor	images	were	made	using	855	

a	Photoshop	(Adobe,	USA).						856	

	857	

The	problem	of	population	spike	potentiation	858	

A	separate	complication	with	low-dose	muscimol	was	that	not	only	was	it	permissive	for	859	

the	 induction	 of	 LTP	measured	 using	 the	 early	 rising	 slope	 of	 the	 fEPSP,	 it	 was	 also	860	

permissive	 for	spike	potentiation.	Thus,	while	minimal	cell-firing	was	observed	before	861	

LTP,	some	cell-firing	under	low-dose	muscimol	was	observed	after	LTP	induction	(Figure	862	

S3).	This	was	modest	and	so,	rather	than	plot	normalised	data	to	a	near-zero	pre-tetanus	863	

baseline,	 absolute	data	are	plotted.	This	 raises	 the	possibility	 that,	 in	 the	behavioural	864	

study,	it	may	have	been	possible	for	the	animals	to	retrieve	information	about	a	previous	865	

session	(s1)	under	low-dose	musicimol	after	they	had	started	encoding	new	information	866	

about	 platform	 location	 in	 the	 current	 session	 (s2)	 (because	 cell-firing	might	 then	 be	867	

possible).	 In	 practice,	 we	 suspect	 such	 cell-firing	 is	 very	 unlikely	 in	 the	 behavioural	868	

situation.	 This	 is	 because	 LTP	 induction	 using	 3	 trains	 of	 50	 pulses	 at	 250	 Hz	 is	 an	869	

artificial	 tetanisation	 protocol	 designed	 to	 investigate	 activity-dependent	 synaptic	870	

plasticity	 in	 vivo	 but	 a	 firing	 pattern	 that	 does	 not	 occur	 during	 normal	 behavioural	871	

learning.	 Activity-dependent	 synaptic	 potentiation	 in	 vivo	 depends	 on	 more	 subtle	872	

patterns	of	neuronal	activation,	such	as	spike-timing	dependent	plasticity	in	a	subset	of	873	

neurons	which	is	unlikely	to	cause	much	post-LTP	cell-firing.	874	

	875	
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QUANTIFICATION	AND	STATISTICAL	ANALYSIS	876	

	877	

Data	Analysis	878	

	879	

Behavioural	Data	Analysis	880	

The	measures	of	performance	used	were	(1)	first	crossing	latency	(s)	during	training	and	881	

(2)	percent	time	spent	swimming	in	a	target	zone	during	DMP	probe	tests.	The	retrieval	882	

tests	were	always	on	the	first	trial	of	each	session	and,	as	described	above,	involved	the	883	

hidden	platform	being	raised	to	within	1.5	cm	of	the	water	surface	only	after	60	s	had	884	

passed.	885	

Repeated-measures	 analysis	 of	 variance	 (ANOVA)	was	 used	 to	 examine	 the	 impact	 of	886	

within	subjects	variables	on	behavioral	measures	with	within	subject	factors	session	and	887	

condition.	 Orthogonal	 comparisons	were	 used	 to	 further	 examine	main	 effects	 of	 the	888	

ANOVA.	Two-tailed	one-sample	t	tests	were	used	to	compare	search	preference	measures	889	

to	the	value	expected	by	chance	(4%).	The	level	of	significance	was	set	P	<	0.05.	Data	are	890	

presented	as	mean	±	SEM.	The	statistical	analysis	was	made	using	IBM	SPSS	Statistics	891	

(IBM,	USA).		892	

	893	

Electrophysiological	Data	Analysis		894	

The	analyses	were	done	using	routines	implemented	in	Spike2,	version	6.03	(Cambridge	895	

Electronic	 Design,	 UK).	 Quantitative	 measurements	 reflecting	 the	 fEPSP	 and	 the	896	

population	spike	(PS)	activity	were	done	following	standard	criteria.	The	PS	recorded	in	897	

the	Dentate	Gyrus	is	measured	as	the	difference	between	the	maximal	negativity	of	the	898	

spike	and	the	maximal	point	of	the	precedent	positive	crest.	The	fEPSP	is	measured	as	the	899	

steepest	slope	in	the	negative	going	potential	in	mV/ms.	900	

	901	

All	statistics	were	performed	and	plotted	using	GraphPad	Prism	5.04	software	(GraphPad	902	

Software,	USA).	For	any	statistical	analysis	shown,	two-tailed	repeated-measures	t	test	903	

(for	two	groups,	or	one	group	vs.	a	fixed	number)	or	1-way	ANOVA	(for	more	than	two	904	

groups)	for	a	significance	level	of	P	<	0.05	was	used.	When	2	factors	concur,	2-way	ANOVA	905	

is	 utilized	with	 the	 same	 significance	 threshold.	 For	 repeated	measures	 experiments,	906	

repeated-measures	ANOVA	are	utilized.	Post-hoc	Bonferroni	multiple-comparisons	test	907	

is	used	to	describe	the	origin	of	significance.	All	graphs	represent	Mean	±	SEM.	908	
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	909	

Histological	Data	Analysis	910	

For	 analysis	 of	 diffusion	 for	 fluorescent	 muscimol,	 areas	 in	 the	 dorsal/intermediate	911	

hippocampus,	 retrosplenial	 cortex	 and	 parietal	 association/secondary	 visual	 cortices	912	

were	 equally	 divided	 into	 grid	 squares	 (200	 ×	 200	 µm)	 and	 the	 averaged	 fluorescent	913	

intensity	was	measured.	Also,	we	divided	the	entire	cortical	area	at	the	injection	point	914	

(i.e.,	 –4.00	 mm	 from	 the	 Bregma)	 into	 ten	 equal	 regions,	 calculated	 the	 averaged	915	

fluorescent	 intensity,	 and	 set	 the	 threshold	as	 the	mean	+	2SD.	The	measurements	of	916	

fluorescent	intensity	and	area	was	made	using	a	MetaMorph	software.	917	

	918	

DATA	AND	SOFTWARE	AVAILABILITY	919	

Electrophysiological	and	behavioural	data	are	available	upon	request	by	contacting	the	920	

Corresponding	Authors,	Richard	Morris	(r.g.m.morris@ed.ac.uk)	and	on-line.	921	

	922	

SUPPLEMENTAL	INFORMATION	923	

Data	 S1:	 First-crossing	 latency	 for	 behavioural	 task	 during	 initial	 training	 displaying	924	

within	day	 learning	to	approach	the	correct	escape	 location	across	each	daily	set	of	4	925	

trials.	Related	to	Figure	1E.	926	

	927	

Data	S2:			Full	electrophysiology	data	for	Figure	2.	928	

	929	

Data	S3:	 	Probe	test	data	showing	patterns	of	recall	and	new	learning	across	different	930	

drug	conditions.	931	

	932	



 
 

 

 
 
Figure S1. The Watermaze and Atlantis Platform. Related to Figure 1. 
(A) Photograph of the pool and associated 3D extramaze cues in the laboratory in Edinburgh.  (B) The possible 
platform locations (n=24), with only one used per session, located on virtual outer and inner rings as viewed 
by the overhead camera.  (C) The ‘on-demand’ or ‘Atlantis Platform’ is unavailable at the bottom of the pool 
until it rises on a spindle until its top surface is 1.5 cm below the water surface, and thus available for escape. 
 

 

 
 
  



 
 

 
 
 
Figure S2. Electrophysiological analysis of effect drug diffusion through longitudinal axis of 
hippocampus, and of diffusion of a fluorescent labelled muscimol. Related to Figure 2.   (A) Electrode 



 
 

placements for the main study in which the recording electrode was within 0.5 mm from the AP location of the 
2 ul drug infusion (i.e. region of maximal effect). Data shown in main Figure 2. (B) Electrode placements for 
the subsidiary study in which the recording electrode was 2 mm from the AP location of the 2 ul drug infusion. 
(C, D, E) fEPSP, Population Spike and averaged data (n=5) of the animals in the subsidiary study. The drug 
continues to have a substantial impact at 2 mm distance, suggesting a likely spread over 4 mm in the AP 
direction of muscimol. (F, G) Image and quantitation of diffusion of fluorescent muscimol bodipy from an 
infusion site at AP 4.0. One animal (H0205) showed diffusion of muscimol bodipy over approximately 3.0 mm, 
the other 2 animals showed less diffusion.  There is no diffusion in the retrosplenial cortex, but some is detected 
in the parietal area immediately above the tip of infusion cannula reflecting "leakage" up the cannula track. 
 
 
  



 
 

 

 
 
Figure S3. Population spike LTP shown in mV.  The usual way in which LTP data is plotted is 
normalised to a pre-tetanus baseline.  However, this is not sensible with a near zero baseline for the 
muscimol treated animals. Related to Figure 2. 
(A) Clear potentiation of the population spike (PS) occurred after aCSF infusion, with the mean population 
spike reaching circa 8 mV.  (B) Potentiation of the spike also occurred with low-dose muscimol (0.38 
nanomoles), but the absolute magnitude was very small and a mean pop spike of circa 2 mV. (C) D-AP5 
blocked spike potentiation, when judged against the steadily rising control condition (see Figure 2).  However, 
some spiking is observed as with muscimol.   
 
 


	Silent Learning-Dr65 with STAR METHODSFNL-300818
	Supplemental Information

