14 research outputs found

    BRCAness Predicts Resistance to Taxane-Containing Regimens in Triple Negative Breast Cancer During Neoadjuvant Chemotherapy

    Get PDF
    AbstractBackgroundTo provide optimal treatment of heterogeneous triple negative breast cancer (TNBC), we need biomarkers that can predict the chemotherapy response.Patients and MethodsWe retrospectively investigated BRCAness in 73 patients with breast cancer who had been treated with taxane- and/or anthracycline-based neoadjuvant chemotherapy (NAC). Using multiplex, ligation-dependent probe amplification on formalin-fixed core needle biopsy (CNB) specimens before NAC and surgical specimens after NAC. BRCAness status was assessed with the assessor unaware of the clinical information.ResultsWe obtained 45 CNB and 60 surgical specimens from the 73 patients. Of the 45 CNB specimens, 17 had BRCAness (38.6% of all subtypes). Of the 23 TNBC CNB specimens, 14 had BRCAness (61% of TNBC cases). The clinical response rates were significantly lower for BRCAness than for non-BRCAness tumors, both for all tumors (58.8% vs. 89.3%, P = .03) and for TNBC (50% vs. 100%, P = .02). All tumors that progressed with taxane therapy had BRCAness. Of the patients with TNBC, those with non-BRCAness cancer had pathologic complete responses significantly more often than did those with BRCAness tumors (77.8% vs. 14.3%, P = .007). After NAC, the clinical response rates were significant lower for BRCAness than for non-BRCAness tumors in all subtypes (P = .002) and in TNBC cases (P = .008). After a median follow-up of 26.4 months, 6 patients—all with BRCAness—had developed recurrence. Patients with BRCAness had shorter progression-free survival than did those with non- BRCAness (P = .049).ConclusionIdentifying BRCAness can help predict the response to taxane, and changing regimens for BRCAness TNBC might improve patient survival. A larger prospective study is needed to further clarify this issue

    Mycelial biomass estimation and metabolic quotient of Lentinula edodes using species-specific qPCR.

    No full text
    Lentinula edodes, commonly known as shiitake, is an edible mushroom that is cultivated and consumed around the globe, especially in Asia. Monitoring mycelial growth inside a woody substrate is difficult, but it is essential for effective management of mushroom cultivation. Mycelial biomass also affects the rate of wood decomposition under natural conditions and must be known to determine the metabolic quotient, an important ecophysiological parameter of fungal growth. Therefore, developing a method to measure it inside a substrate would be very useful. In this study, as the first step in understanding species-specific rates of fungal decomposition of wood, we developed species-specific primers and qPCR procedures for L. edodes. We tested primer specificity using strains of L. edodes from Japan and Southeast Asia, as well as related species of fungi and plant species for cultivation of L. edodes, and generated a calibration curve for quantification of mycelial biomass in wood dust inoculated with L. edodes. The qPCR procedure we developed can specifically detect L. edodes and allowed us to quantify the increase in L. edodes biomass in wood dust substrate and calculate the metabolic quotient based on the mycelial biomass and respiration rate. Development of a species-specific method for biomass quantification will be useful for both estimation of mycelial biomass and determining the kinetics of fungal growth in decomposition processes

    A genome-wide association study identifies three novel genetic markers for response to tamoxifen: A prospective multicenter study.

    No full text
    PURPOSE:Although association studies of genetic variations with the clinical outcomes of breast cancer patients treated with tamoxifen have been reported, genetic factors which could determine individual response to tamoxifen are not fully clarified. We performed a genome-wide association study (GWAS) to identify novel genetic markers for response to tamoxifen. EXPERIMENTAL DESIGN:We prospectively collected 347 blood samples from patients with hormone receptor-positive and human epidermal growth factor receptor 2-negative, invasive breast cancer receiving preoperative tamoxifen monotherapy for 14 to 28 days. We used Ki-67 response in breast cancer tissues after preoperative short-term tamoxifen therapy as a surrogate marker for response to tamoxifen. We performed GWAS and genotype imputation using 275 patients, and an independent set of 72 patients was used for replication study. RESULTS:The combined result of GWAS and the replication study, and subsequent imputation analysis indicated possible association of three loci with Ki-67 response after tamoxifen therapy (rs17198973 on chromosome 4q34.3, rs4577773 on 6q12, and rs7087428 on 10p13, Pcombined = 5.69 x 10-6, 1.64 x 10-5, and 9.77 x 10-6, respectively). When patients were classified into three groups by the scoring system based on the genotypes of the three SNPs, patients with higher scores showed significantly higher after/before ratio of Ki-67 compared to those with lower scores (P = 1.8 x 10-12), suggesting the cumulative effect of the three SNPs. CONCLUSION:We identified three novel loci, which could be associated with clinical response to tamoxifen. These findings provide new insights into personalized hormonal therapy for the patients with breast cancer
    corecore