69 research outputs found

    Cellulose-inorganic hybrids of strongly reduced thermal conductivity

    Get PDF
    The employment of atomic layer deposition and spin coating techniques for preparing inorganic-organic hybrid multilayer structures of alternating ZnO-CNC layers was explored in this study. Helium ion microscopy and X-ray reflectivity showed the superlattice formation for the nanolaminate structures and atomic force microscopy established the efficient control of the CNCs surface coverage on the Al-doped Zeta nO by manipulating the concentration of the spin coating solution. Thickness characterization of the hybrid structures was performed via both ellipsometry and X-ray reflectivity and the thermal conductivity was examined by time domain thermoreflectance technique. It appears that even the incorporation of a limited amount of CNCs between the ZnO laminates strongly suppresses the thermal conductivity. Even small, submonolayer amounts of CNCs worked as a more efficient insulating material than hydroquinone or cellulose nanofibers which have been employed in previous studies.Peer reviewe

    Hybridization from Guest-Host Interactions Reduces the Thermal Conductivity of Metal-Organic Frameworks

    Get PDF
    We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal–organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of ∼48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules’ effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. The reduction in thermal conductivity can be ascribed to an increase in vibrational scattering introduced by extrinsic guest-MOF collisions as well as guest molecule-induced modifications to the intrinsic vibrational structure of the MOF in the form of hybridization of low frequency modes that is concomitant with an enhanced population of localized modes. The concentration of localized modes and resulting reduction in thermal conductivity do not seem to be significantly affected by the mass or bonding strength of the guest species

    Ultrafast evanescent heat transfer across solid interfaces via hyperbolic phonon polaritons in hexagonal boron nitride

    Full text link
    The efficiency of phonon-mediated heat transport is limited by the intrinsic atomistic properties of materials, seemingly providing an upper limit to heat transfer in materials and across their interfaces. The typical speeds of conductive transport, which are inherently limited by the chemical bonds and atomic masses, dictate how quickly heat will move in solids. Given that phonon-polaritons, or coupled phonon-photon modes, can propagate at speeds approaching 1 percent of the speed of light - orders of magnitude faster than transport within a pure diffusive phonon conductor - we demonstrate that volume-confined, hyperbolic phonon-polariton(HPhP) modes supported by many biaxial polar crystals can couple energy across solid-solid interfaces at an order of magnitude higher rates than phonon-phonon conduction alone. Using pump-probe thermoreflectance with a mid-infrared, tunable, probe pulse with sub-picosecond resolution, we demonstrate remote and spectrally selective excitation of the HPhP modes in hexagonal boron nitride in response to radiative heating from a thermally emitting gold source. Our work demonstrates a new avenue for interfacial heat transfer based on broadband radiative coupling from a hot spot in a gold film to hBN HPhPs, independent of the broad spectral mismatch between the pump(visible) and probe(mid-IR) pulses employed. This methodology can be used to bypass the intrinsically limiting phonon-phonon conductive pathway, thus providing an alternative means of heat transfer across interfaces. Further, our time-resolved measurements of the temperature changes of the HPhP modes in hBN show that through polaritonic coupling, a material can transfer heat across and away from an interface at rates orders of magnitude faster than diffusive phonon speeds intrinsic to the material, thus demonstrating a pronounced thermal transport enhancement in hBN via phonon-polariton coupling

    Ruddlesden-Popper chalcogenides push the limit of mechanical stiffness and glass-like thermal conductivity in crystals

    Full text link
    Insulating materials featuring ultralow thermal conductivity for diverse applications also require robust mechanical properties. Conventional thinking, however, which correlates strong bonding with high atomic-vibration-mediated heat conduction, led to diverse weakly bonded materials that feature ultralow thermal conductivity and low elastic moduli. One must, therefore, search for strongly-bonded materials in which heat transport is impeded by other means. Here, we report intrinsic, glass-like, ultralow thermal conductivity and ultrahigh elastic-modulus/thermal-conductivity ratio in single-crystalline, BaZrS3-derived, Ruddlesden-Popper phases Ban+1ZrnS3n+1, n = 2, 3. Their key features are strong anharmonicity and intra-unit-cell rock-salt blocks. The latter produce strongly bonded intrinsic superlattices, impeding heat conduction by broadband reduction of phonon velocities and mean free paths and concomitant strong phonon localization. The present study initiates a paradigm of "mechanically stiff phonon glasses"

    Malaria Transmission, Infection, and Disease following Sustained Indoor Residual Spraying of Insecticide in Tororo, Uganda.

    Get PDF
    Tororo, a district in Uganda with historically high malaria transmission intensity, has recently scaled up control interventions, including universal long-lasting insecticidal net distribution in 2013 and 2017, and sustained indoor residual spraying (IRS) of insecticide since December 2014. We describe the burden of malaria in Tororo 5 years following the initiation of IRS. We followed a cohort of 531 participants from 80 randomly selected households in Nagongera subcounty, Tororo district, from October 2017 to October 2019. Mosquitoes were collected every 2 weeks using CDC light traps in all rooms where participants slept, symptomatic malaria was identified by passive surveillance, and microscopic and submicroscopic parasitemia were measured every 4 weeks using active surveillance. Over the 2 years of follow-up, 15,780 female anopheline mosquitos were collected, the majority (98.0%) of which were Anopheles arabiensis. The daily human biting rate was 2.07, and the annual entomological inoculation rate was 0.43 infective bites/person/year. Only 38 episodes of malaria were diagnosed (incidence 0.04 episodes/person/year), and there were no cases of severe malaria or malarial deaths. The prevalence of microscopic parasitemia was 1.9%, and the combined prevalence of microscopic and submicroscopic parasitemia was 10.4%, each highest in children aged 5-15 years (3.3% and 14.0%, respectively). After 5 years of intensive vector control measures in Tororo, the burden of malaria was reduced to very low transmission levels. However, a significant proportion of the population remained parasitemic, primarily school-aged children with submicroscopic parasitemia, providing a potential reservoir for malaria transmission
    corecore