51 research outputs found

    Platinum Integrated Graphene for Methanol Fuel Cells

    Get PDF
    Uniform and porous graphene nanoflake films (GNFs) have been investigated as a support for catalytic Pt nanoclusters in direct methanol electro-oxidation. Pt nanoclusters of varying thickness are deposited on GNFs using magnetron sputtering, and their effects on the electrocatalytic activity for oxidizing methanol are systemically studied. GNF supported Pt nanoclusters with ultralow catalyst loading exhibit high performance for methanol electrocatalytic oxidation with a large mass-specific peak current density and a ratio of forward to backward peak currents up to 1.4. These characteristics compare favorably to the majority of Pt−C based electrodes, except for those of carbon nanotubes with Pt decoration on both the inner and the outer wall surfaces. The results obtained are ascribed to a highly coupled network made of high-density 2−4 nm Pt monolayer nanoclusters on both the basal and edge planes of each nanoflakes of graphene. GNFs are a promising support material for developing next-generation advanced Pt based fuel cells and their relevant electrodes in the field of energy

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    The effects of electrode and catalyst selection on microfluidic fuel cell performance

    Get PDF
    A fuel cell can be best defined as an electrochemical converter of fuel and oxidant of chemical energy to electrical energy. The important components of micro fuel cells are the electrodes and catalysts because the kinetics and rates of the electrochemical reactions depend on their materials. All fuel cells consist of two electrodes: the anode, where fuel oxidation takes place, and the cathode, which is used to reduce the oxidants. The present review article highlights the use of a range of electrodes made up of different materials, a variety of catalysts that have been used in previous studies, and their fabrication materials and approaches. In this article, electrodes and catalysts are classified into two types based on the design approach applied to produce the micro fuel cell: micro fuel cell design and conventional assembly design. Most previous studies on fuel cells have demonstrated that the construction and position of the electrodes play crucial roles in improving the performance of micro fuel cells

    Topochemical conversion of a dense metal-organic framework from a crystalline insulator to an amorphous semiconductor

    No full text
    The topochemical conversion of a dense, insulating metal–organic framework (MOF) into a semiconducting amorphous MOF is described. Treatment of single crystals of copper(I) chloride trithiocyanurate, CuICl(ttcH3) (ttcH3 = trithiocyanuric acid), 1, in aqueous ammonia solution yields monoliths of amorphous CuI1.8(ttc)0.6(ttcH3)0.4, 3. The treatment changes the transparent orange crystals of 1 into shiny black monoliths of 3 with retention of morphology, and moreover increases the electrical conductivity from insulating to semiconducting (conductivity of 3 ranges from 4.2 × 10−11 S cm−1 at 20 °C to 7.6 × 10−9 S cm−1 at 140 °C; activation energy = 0.59 eV; optical band gap = 0.6 eV). The structure and properties of the amorphous conductor are fully characterized by AC impedance spectroscopy, X-ray photoelectron spectroscopy, X-ray pair distribution function analysis, infrared spectroscopy, diffuse reflectance spectroscopy, electron spin resonance spectroscopy, elemental analysis, thermogravimetric analysis, and theoretical calculations

    Sulfated zirconia nanoparticles as proton conductors for fuel cell electrodes

    No full text
    corecore