8 research outputs found

    Cosmological perturbations in modified teleparallel gravity models: Boundary term extension

    Get PDF
    Teleparallel gravity offers a new avenue in which to construct gravitational models beyond general relativity. While teleparallel gravity can be framed in a way to be dynamically equivalent to general relativity, its modifications are mostly not equivalent to the traditional route to modified gravity. f(T,B)f(T,B) gravity is one such gravitational theory where the second and fourth order contributions to the field equations are decoupled. In this work, we explore the all important cosmological perturbations of this new framework of gravity. We derive the gravitational propagation equation, its vector perturbation stability conditions, and its scalar perturbations. Together with the matter perturbations, we derive the effective gravitational constant in this framework, and find an interesting branching behaviour that depends on the particular gravitational models being probed. We close with a discussion on the relation of these results with other gravitational theories.Comment: 21 page

    Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality

    Full text link
    We study the background cosmology of the ghost-free, bimetric theory of gravity. We perform an extensive statistical analysis of the model using both frequentist and Bayesian frameworks and employ the constraints on the expansion history of the Universe from the observations of supernovae, the cosmic microwave background and the large scale structure to estimate the model's parameters and test the goodness of the fits. We explore the parameter space of the model with nested sampling to find the best-fit chi-square, obtain the Bayesian evidence, and compute the marginalized posteriors and mean likelihoods. We mainly focus on a class of sub-models with no explicit cosmological constant (or vacuum energy) term to assess the ability of the theory to dynamically cause a late-time accelerated expansion. The model behaves as standard gravity without a cosmological constant at early times, with an emergent extra contribution to the energy density that converges to a cosmological constant in the far future. The model can in most cases yield very good fits and is in perfect agreement with the data. This is because many points in the parameter space of the model exist that give rise to time-evolution equations that are effectively very similar to those of the Λ\LambdaCDM. This similarity makes the model compatible with observations as in the Λ\LambdaCDM case, at least at the background level. Even though our results indicate a slightly better fit for the Λ\LambdaCDM concordance model in terms of the pp-value and evidence, none of the models is statistically preferred to the other. However, the parameters of the bigravity model are in general degenerate. A similar but perturbative analysis of the model as well as more data will be required to break the degeneracies and constrain the parameters, in case the model will still be viable compared to the Λ\LambdaCDM.Comment: 42 pages, 9 figures; typos corrected in equations (2.12), (2.13), (3.7), (3.8) and (3.9); more discussions added (footnotes 5, 8, 10 and 13) and abstract, sections 4.2, 4.3 and 5 (conclusions) modified in response to referee's comments; references added; acknowledgements modified; all results completely unchanged; matches version accepted for publication in JHE

    Disformal vectors and anisotropies on a warped brane\protect Hulluilla on Halvat Huvit

    No full text
    The Maxwell action is conformally invariant and classically ignorant of conformally flat metrics. However, if the vector lives in a disformal metric - as it does if residing upon a moving brane - this is no longer true. The disformal coupling is then mediated by a Dirac-Born-Infeld scalar field. Here a systematic dynamical system analysis is developed for anisotropic Bianchi I cosmology with a massive disformally coupled vector field. Several new fixed points are found, including anisotropic scaling solutions. The formalism here presented can be conveniently applied to general scenarios with or without extra dimensional motivations. This is illustrated here by performing a complete analysis with the assumption that both the potentials and the warp factor for the brane are (nearly) exponential. In that case, the anisotropic fixed points are either not attractors, do not describe accelerating expansion or else they feature too large anisotropies to be compatible with observations. Nonetheless, viable classes of models exist where isotropy is retained due to rapid oscillations of the vector field, thus providing a possible realisation of disformally interacting massive dark matter.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Modified Gravity and Cosmology: An Update by the CANTATA Network

    No full text
    General Relativity and the Λ\LambdaCDM framework are currently the standard lore and constitute the concordance paradigm. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications. All extended theories and scenarios are first examined under the light of theoretical consistency, and then are applied to various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology are able to offer recently. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are candidates for the description of Nature. We list the recent developments in the fields of gravity and cosmology, presenting the state of the art, high-lighting the open problems, and outlining the directions of future research. Its realization is performed in the framework of the COST European Action "Cosmology and Astrophysics Network for Theoretical Advances and Training Actions"

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore