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Abstract Teleparallel gravity offers a new avenue in which
to construct gravitational models beyond general relativity.
While teleparallel gravity can be framed in a way to be
dynamically equivalent to general relativity, its modifica-
tions are mostly not equivalent to the traditional route to
modified gravity. f (7, B) gravity is one such gravitational
theory where the second and fourth order contributions to the
field equations are decoupled. In this work, we explore the all
important cosmological perturbations of this new framework
of gravity. We derive the gravitational propagation equation,
its vector perturbation stability conditions, and its scalar per-
turbations. Together with the matter perturbations, we derive
the effective gravitational constant in this framework, and
find an interesting branching behaviour that depends on the
particular gravitational models being probed. We close with
a discussion on the relation of these results with other gravi-
tational theories.

1 Introduction

Cosmological perturbations have shown the possibility of
opening a pathway to revealing the cosmological evolution
of the Universe in General Relativity (GR) and crucially in
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theories beyond GR [1-3]. The results of perturbations anal-
ysis can then be used in the confrontation with observational
data to better understand which models fair better against
data related to cosmic evolution [4—6]. On the other hand, the
ACDM cosmological model is supported by an abundance
of evidence in describing the evolution of the Universe at all
cosmological scales [7,8] when matter beyond the standard
model of particle physics is included. This takes the form of
dark matter as a stabilizing ingredient in galactic structures
[9,10], while dark energy is represented by the cosmological
constant [11,12] and is the agent responsible for producing
late-time accelerated cosmic expansion [13,14] in this pic-
ture of the Universe. Nevertheless, even though great efforts
have been directed at this part of the theory, internal problems
persist with the concept of a cosmological constant [15], and
direct evidence for dark matter particles remains elusive [16].

The performance of the ACDM model has also become an
open problem in recent years. In essence, the ACDM model
was realised as a confrontation with Hubble expansion data
but the so-called Hj tension calls this feature into question,
where the observational discrepancy between model inde-
pendent measurements in the late Universe [17,18] are in
a meaning disagreement with the predicted value from the
early Universe [19,20]. This tension has only grown in recent
years [19,21]. Saying that the problem still appears to be
open with measurements from the tip of the red giant branch
(TRGB, Carnegie-Chicago Hubble Program) pointing to a
lower Hj tension, the issue may ultimately be resolved by
novel future observations such as measurements using gravi-
tational wave astronomy standard candles [22,23] which may
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be accelerated once the LISA mission [24,25] starts taking
data.

There is now an abundance of theories beyond GR which
aim to produce viable models of gravity that can agree with
the new regime of precision measurements which have only
became available in recent decades [6,26,27]. Itis not enough
for these theories to agree with cosmological observations
at background level such as with the value of Hy. Theories
beyond GR must also produce observable quantities from
their perturbed dynamical equation that agree with current
observations to be seriously considered. One such observable
that is gaining increased interest is that of fog which also
hosts a growing but weak tension with the ACDM model of
cosmology. It was in Refs. [28,29] that cosmological pertur-
bation theory was first developed in a consistent way, where a
gauge-invariant approach was first developed. This approach
has been used to analyze numerous models of gravity [6] with
various successes. These theories mainly appear as an exten-
sion to GR [26,30,31] and build on corrections designed for
various purposes that may have a cosmological effect at dif-
ferent epochs. However, these approaches can be collectively
grouped by their common expression of gravitation through
the use of the Levi-Civita connection, i.e. they communicate
gravity by means of geometric curvature of spacetime [7,32].
This is not the only choice where torsion, through teleparal-
lel gravity, has become an increasingly popular replacement
for the curvature associated with the Levi-Civita connection
[33-35].

Teleparallel Gravity (TG) refers to the collection of the-
ories that express gravity through the torsion of the telepar-
allel connection [36]. The general linear teleparallel connec-
tion [37] is only required to be flat (curvature-less), but in
this work we further restrict to the case of metric-compatible
teleparallel connections. Given these properties, all curva-
ture based measures of gravity will naturally vanish iden-
tically. A consequence of this is that the Einstein—Hilbert
action, as determined with the teleparallel connection, will
also vanish, i.e., R = 0, while its regular Levi-Civita connec-
tion version will remain the same, i.e., 13 # 0 (where over-
circles will refer to quantities determined using the Levi-
Civita connection throughout). By replacing the Ricci scalar
in the Einstein—Hilbert action with its torsion scalar analog
will produce identical dynamical equations. This is called the
Teleparallel equivalent of General Relativity (TEGR), and
differs from GR by a boundary B term in the gravitational
Lagrangian.

The TEGR boundary term embodies the fourth order con-
tributions to the field equations which is an important aspect
of many theories beyond GR. In TG, the second and fourth
order field equation contributions become decoupled from
each other unlike in standard gravity where the Levi-Civita
connection is employed. Using this rationale, modifications
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of TEGR will have a meaningful and impactful difference as
compared with regular modified theories of gravity. The most
prescient of these properties will be the realisation of produc-
ing generically second order theories of gravity in some gen-
eralizations of TEGR. This is to be contrasted with GR where
by the Lovelock theorem [38], second order field equations
are only produced by the Einstein—Hilbert action (with the
addition of a constant) unless extra assumptions are included
such as scalar fields or extra dimensions. In TG, the Love-
lock theorem is weakened [39,40] allowing for a plethora of
additional theories beyond TEGR that continue to produce
second order field equations. TG also has a number of other
attractive properties such as its similarity to Yang-mills the-
ory [33] which gives it features of particle physics theory,
as well as the possibility of giving a well-defined energy—
momentum tensor for gravitation [41,42], and that it does
not require an associated Gibbons—Hawking—York bound-
ary term giving a more structured form to its Hamiltonian
formalism, in addition to others. .

One of the best studied modification to GR is that of f(R)
gravity [26,30,31], and TEGR can similarly be generalized to
produce f(T) gravity [43—48]. This has several key proper-
ties chief among which is that it produced second order field
equations and has shown promise in its confrontation with
observations at various scales [34,49-55]. TG can also offer
a path in which f (I%) gravity is dynamically generalized by
considering f (T, B) gravity where the different order contri-
butions are decoupled from one another [56—61]. This limits
to f(R) gravity in the limit where f(R) = f(~T + B).
f (T, B) gravity has shown promise as being a viable at var-
ious scales ranging from solar system tests in the weak field
regime [59,62-64], as well as its cosmological theoretical
structure [56,56,58,60] and confrontation with observational
data [65].

In f(T) gravity, cosmological perturbations have been
considered in a number of works [49,50,66—68] which has
been extended to a number of other extensions to TEGR
such as Ref. [69] where matter perturbations are considered
in f(T,7T) gravity and Ref. [70] in which the perturbations
in teleparallel loop quantum cosmology are performed. In
the present work, we determine the cosmological perturba-
tions about a flat Friedmann-Lemaitre—Robertson—Walker
(FLRW) metric. Together with the perturbations associated
with the matter contribution, we form the linear perturba-
tion equations in order to produce probes that can be used
in observational cosmology. In Sect. 2, we briefly review
f(T, B) gravity and its associated cosmology. In Sect. 3,
we develop the gravitational perturbations while in Sect. 4
we form the perturbations equations with the perturbations
about a perfect fluid. Finally in Sect. 5, we conclude our work
with a discussion of the core results. In this work we use the
(4, —, —, —) signature.
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2 Modified teleparallel theories of gravity

The curvature associated with the Levi-Civita connection
f‘zv (we use over-circles to denote quantities calculated with
the Levi-Civita connection throughout) is torsion-less and
satisfies the metricity condition [7,32]. TG is distinct from
GR in that it supplants this connection with a torsion-ful
teleparallel connection I'j, that has vanishing curvature and
continues to satisfy the metricity condition [33-35,71]. In
GR, many quantities are built on the Riemann tensor since it
gives ameasure of curvature on a manifold, itis for this reason
that many modified theories of gravity feature implementa-
tions of this tensor [6]. However, in replacing this connection
with its flat counterpart in teleparallel gravity, renders these
quantities null irrelevant of the entries of the metric tensor.
It is in this context that TG theory requires a novel approach
to constructing tensorial quantities in order to build gravita-
tional models.

GR is built on the metric tensor g, being the fundamental
dynamical object, as are the modifications of GR. In TG,
the metric tensor becomes a derived object with the tetrad
et u replacing it as the fundamental gravitational variable of
the theory [33]. In this context, Latin indices refer to the
Minkowski space while Greek indices point to the general
manifold, where the tetrad acts as a soldering agent between
the two. Thus, the tetrad (and its inverses E A“ ) can transform
between the general manifold and its associated Minkowski
space through

guv = €AM€BU77AB, nag = E,"Egguv. (1)
where the tetrads observe orthogonality conditions
A ER =58, A E =0, )

for consistency’s sake. The teleparallel connection can then
be defined as [36]

Ff)’” = EAGBMeAV + EA”wABMer, 3)

where w4 B, Tepresents the spin connection. The teleparallel

connection represents the most general linear affine connec-
tion that is flat and satisfies the metricity condition [33,72].
The spin connection w? py Acts as a balance to retain the
general covariance of the ensuing field equations due to the
freedom in the choice of the tetrad components in Eq. (1)
[73]. Levi-Civita based theories (such as GR) hide this fea-
ture in its inertial structure and does not play an active role
for most expressions of the theory [7,32]. The spin connec-
tion in TG is totally inertial and incorporates the effects of
the local Lorentz transformations (LLTs) thus producing LLT
invariant theories. Naturally, there will always exist a frame
where the spin connection is vanishing as in the original for-
mulation in Ref. [36], and this choice of frame is called the
Weitzenbock gauge.

The spin connection can be fully represented as w* By =

A9, A 5 [33], where the full breadth of the LLTs (Lorentz
boosts and rotations) are represented by A4 g- Through this
perspective, there exist an infinite number of tetrads that sat-
isfy Eq. (1), each of which produces an independent spin
connection which counter-balances each other. It is there-
fore the tetrads together with its associated spin connection
that renders a covariant formulation of TG.

Building on rationale of the Riemann tensor, the teleparal-

lel connection can be straightforwardly used to build a mean-
ingful measure of torsion through an antisymmetric opera-
tion on its lower indices. Thus, torsion can be represented
as an expression of antisymmetry through the torsion tensor
defined as [34,35]
T, = —2I0 “)
where square brackets denote the usual antisymmetric oper-
ator. The field strength of TG is represented by the torsion
tensor [33], which transforms covariantly under both diffeo-
morphisms and LLTs. As in theories of gravity based on the
Levi-Civita connection, we can also construct other gravita-
tional tensors that reveal general features of TG. Firstly, take
the contorsion tensor that emerges as the difference between
the teleparallel and Levi-Civita connections, and can be writ-
ten purely in terms of the torsion tensor as

8 1
K°,, =T7, —I7, = 5 (T,%+T,% —T%,)- §))
This has an important role to play in relating TG with GR and
its modifications, as will become apparent later on. Another
core component of TG is the superpotential defined as [35]

S, ::%(K’“A—i—eA”T“—eA“T”), ©6)
where TV := T%,V = —T*",. This has been shown to have
a potential relationship to the energy—momentum tensor for
gravitation [74] but the issue remains open [75]. By con-
tracting the torsion tensor together with its superpotential,
the torsion scale emerges [34]

T:=5,""T",. (7
as being purely the product of the teleparallel connection,
in an analogous way to the Ricci scalars dependence purely
on the Levi-Civita connection. The standard Ricci scalar R
(computed with the Levi-Civita connection) clearly will not
vanish but its TG analog will, R = 0. Using the contorsion
tensor, it can be shown that the teleparallel Ricci scalar, which
vanishes, is equal to the sum of the Ricci and torsion scalars
(up to a boundary term) through [76,77]

R=IO?+T—§8M(6T“)=O. 8)

@ Springer



53 Page4of 16

Eur. Phys. J. C (2021) 81:53

This directly leads to an equivalency relation between the
standard Ricci and torsion scalars given by

R=-T+ %au (eT*) = =T + 2V, (T") = T + B,
©))

where we define the boundary term as

B =2V, (T"), (10)

called the TEGR boundary term, and where ¢ = det(e? u) =
«/—g is the tetrad determinant. The ensuing dynamical equa-
tions will thus be guaranteed to be identical since these scalars
differ by a boundary when expressed linearly. In this way, we
can define the Teleparallel Gravity equivalent of general rel-
ativity (TEGR) as

1
STEGR = — =

57 | 4 eT+/d4x Lo, (11)

where k> = 87 G and L,, is the regular matter Lagrangian.
The boundary term difference at the level of the Lagrangians
can have an important impact when modifications of TEGR
are considered which can lead to novel approaches to grav-
ity that not recoverable in GR. In fact, the boundary term
embodies the fourth order derivative contributions to the GR
field equations thus decoupling these contributions that are
incorporated in the Ricci scalar in standard gravity.

In standard gravity, one of the most popular approaches
to gravity beyond GR is that of f (13) gravity [26,30] in
which the Ricci scalar is straightforwardly generalized to
an arbitrary function therefore. Another is Horndeski theory
in which a single scalar field is added with the proviso of
producing second order equations of motion [78] which was
recently formulated in TG [40,79,80]. In TEGR, two scalars
play an important role in producing the equivalency with GR
in standard gravity. The torsion scalar produces the same
second order dynamics, while the boundary term absorbs the
divergence quantities. The T and B scalars embody the sec-
ond and fourth order contributions respectively. It is for these
reasons that to fully embody the rationale of many theories
beyond GR we must consider an arbitrary generalization with
both scalars. This will also suitably incorporate f (13) gravity
as a subcase of the broader f(7, B) framework.

f (T, B) gravity [56-61,81] is a novel approach to modi-
fying gravity and limits to f (1%) gravity in the limits where
f(T,B) = f(-T + B) = f(I%). This is expressed as a
generalization of TEGR through the action

1
Spr.B) = 55

53 d*x ef (T, B)+fd4x eLon. (12)

Taking a variation of the action with respect to the tetrad
gives [56,59]

@ Springer

283015 — 294V, f5 + Bfad) +4[ufs) + @ fr) |5,/

+ae~ et 0, (eSa") fr — 4 frT% 1y S ™
—f8k = 20", 13)

where subscripts denote derivatives, and ®", is the regular
energy—momentum tensor for matter. The dynamical equa-
tions here have been derived for a vanishing spin connection
(Weitzenbock gauge) scenario which has been shown to be
compatible with a flat FLRW metric [56-59,82] which is
what we develop here.

The spectrum of f (7, B) gravity in Minkowski spacetime
[83]includes the usual massless graviton with a ~ — f7 mod-
ulation of the propagator, and an additional “scalaron” with
a mass ~ 1//—fgp. Thus, to avoid a ghost one requires
that fr < 0 and to avoid a tachyon that fpp < 0. A fea-
ture of general f (T, B) gravity thus is that it expresses the
same gravitational wave polarization signature as f (I(i)’) grav-
ity [57,59].

The field equations in Eq. (13) can straightforwardly be
rewritten as

—frGu + guwllfp — %M%va
1
+§(BfB +Tfr — guw

+2| Vi + VP £ | S = 20,0, (14)

where the Einstein tensor G wv explicitly emerges due to the
close relationship between curvature and torsion. It is impor-
tant to point out that while this represents the field equations
of the teleparallel f(T, B) gravity, the Einstein tensor and
the covariant derivatives are dependent on the Levi-Civita
connection. It is useful to separate these equations to its sym-
metric and antisymmetric parts. To do this, let us introduce
the following tensor

Quu = %[%*fr +V* fa | Sune (15)
and then the antisymmetric field part as Eq. (14) becomes
Qlav) = @ fr + 0" f5) (T + gar Ty — 8w T)  (16)
= |11+ Frm)* T + (f58 + fr)9*B]
X (Torw + 8anTv — v i) =0, (17)

where we have used the condition that the energy—momentum
tensor is symmetric.

Now, in this work we probe the cosmology of f (T, B)
gravity through the tetrad

e, = diag(l,a(r). a(r), a()), (18)

where a(t) is the scale factor, and which reproduces the flat
homogeneous isotropic FLRW metric

ds® = dt* — a(t)>(dx* + dy* + dz?), (19)
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through Eq. (1). This diagonal tetrad is compatible with a
flat spin connection, w By = 0 [73,84]. Through Eq. (7),
the torsion scalar turns out to be

T = —6H?, (20)
and the boundary term is given by

B=—63H*+H), 1)
which together reproduce the Ricci scalar, i.e. R=-T +

B = —6(H + 2H?). Using the field equations in Eq. (13)
together with the FLRW tetrad in Eq. (18) produces the Fried-
mann equations

. 1
3H(fp = 2Hfr) + 5 (Bfp — ) = 2o, (22)

. . . 1
~f5 +2frH +2HGHfT + f1)+ 5 (f = Bfg) =P,
(23)

where overdots refer to derivatives with respect to cosmic
time ¢, and where p and P respectively represent the energy
density and pressure of matter.

At background level, we can write the Friedmann equa-
tions for f (T, B) gravity as an effective fluid equation as an
addition to the TEGR Lagrangian through f (7, B) - —T+
f(T, B). Evaluating the dynamical equations in Eq. (13) for
the FLRW setting gives the Friedmann equations

3H? = k% (p + pert) . (24)
3H?> +2H = —k* (P + Pu) . (25)

Through the effective fluid description, this means that the
fluid properties are represented by

[36A ] o [ ' ' a (0; B+ Bi)
HITT L8 (0T + ') asTt (—wsij 4 90k + 206k ) + 3hij + €iji (30 + o))

Weff 1= —— (29)

fo—3Hfg —2H f7 —2H fr
3H2 (3fB +2fT) —3Hfp+3Hfp—Lf
(30)

In the ACDM limit, this EoS approaches an effective cosmo-
logical constant behaviour where wegf = —1, as expected. In
the next section we consider the cosmological perturbations
within f (T, B) gravity. In that context, it is more convenient
to work with a pure f (7T, B) gravity representation.

3 Cosmological perturbations of f (T, B) gravity

Cosmological perturbations can reveal an incredible amount
of information about the Universe that is not immediately
clear from the background cosmology such as the formation
of cosmic structures and the gravitational wave background
universe. Cosmic perturbations were investigated in f(7)
gravity several times such as Ref. [47] where the tetrad is
only in the correct Weitzenbock gauge in terms of the tensor
perturbations and thus results in an overly restrictive set of
scalar perturbations, which is later clarified in Ref. [73]. It
was only in Ref. [66] that the situation was fully resolved,
which was also applied to the f(7T,7) gravity scenario in
Ref. [69]. The core results have since been confirmed and
widened in Refs. [85-87]. In what follows, we explore the
tensor and scalar cosmological perturbations within the sub-
horizon limit. This is achieved by taking the scalar-vector-
tensor (SVT) decomposition of the cosmological perturba-
tions using [87]

}, 3D

~ ~ L .o~ 1 -~
Ppet i=3H>3f 5 +2f1) = 3H f5 +3H 5 + 5 f,
(26)

1 -~ . - -
1% Pegy := /- GH>+ H)3fp+2f7)

—2Hfr + f3. 27)

The f (T, B) gravity effective fluid description also satisfies
the fluid equation [58]

Pett + 3H (pefr + Pett) = 0, (28)

and leads directly to an effective fluid equation of state (EoS)

which inherits its symmetries from the metric and retains the
Weitzenbock gauge even at perturbative level. It is important
to emphasize that this tetrad remains a good tetrad even at
perturbative level in that the associated spin connection com-
ponents are compatible with the case where they vanish. This
is crucial to producing a consistent cosmological perturba-
tion analysis. A note on the use of indices, A, B, C, D, ...
and Greek lowercase letters w, v, p, o, ... are used as 4-D
indices on the Minkowski and general manifold respectively.
The middle range Latinindices I, J, K, ... and1, i, k, . . . refer
to spacial 3-D indices in Minkowski and general manifold
respectively. In fact, this produces the regular perturbed met-
ric

@ Springer
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[6¢ ]:[ a (@b = B) + (bi — Bi))
M La @ (b= B) + (bi — Bi)) 20 (Y8 + 80k + 20k j) + 3hij)

} , (32)

due to Eq. (1), where h;; is symmetric, traceless #; 1-5’7 =0,
and transverse 9° hij = 0, while all the vectors are solenoidal
ab' = 0.

Now, in our convention, the Fourier transform of a pertur-
bation X will be given by

&k . .
X(t,x) =/W[X(z,k)e”‘x+XT(t,k)e*l’<X], (33)

which is used throughout to transform the cosmological per-
turbations. In the appendices we include all important calcu-
lations of each perturbation.

Also, the matter perturbation of the energy—momentum
tensor for a perfect fluid §©,,, is

3O, = (bp +SP)uyu, + (o + P)duyuy, + (o + Plu,du,
+8Pguv + P3guuv, (34)

where the 4-velocity is represented by u,, and 3-velocity by
v; = ;v with components

800 = dp + 2p0, (35)
80¢; =600 = —apdi(b — B) —a(p + P)o;v, (36)
80;; = a’8P8;; — 2a*Pyr8ij + 2a>Pd;d;h. (37)

Together, this forms the basis for the matter perturbation
equations to be explored later on after the scalar perturba-
tions. In the following computations the xAct packages [88—
94] were used.

3.1 Tensor perturbations

Considering the tensor perturbation part of the cosmological
perturbations in the tetrad in Eq. (31) which are
sel j = %(thiﬁ (38)
we can determine the tensor perturbations within the f (7', B)
action. The tensor modes are determined by considering per-
turbations up to second order in the Lagrangian density,
which in Fourier space results in the gravitational wave prop-
agation equation

. .
hij+(3+V)Hhij+;/’lij =0, (39)
which governs propagation of tensor perturbations. The
background equations were used in these derivations to sim-
plify the perturbation results. Here, the Planck mass run rate
turns out to be

1y

V= Hﬁ, (40)

@ Springer

which is a frictional term in the propagation of gravitational
waves, as evidenced through the gravitational wave propa-
gation equation [95-97]. Immediately, a stability condition
in which fr < 0 can be read off (which depends on the con-
vention being used for the torsion scalar). Another crucial
point that can be read of the tensor perturbations is the speed
of propagation of gravitational waves, which turns out to be
exactly that of light [98]

2

A =1, (41)

and in total agreement with the multimessenger events of
GW170817 [99] and GRB170817A [100].

In this context, f (T, B) gravity is not strongly constrained
by present observations since it predicts speed of light propa-
gation of gravitational waves and no constraints exist for the
Planck run rate. However, the stability conditions in Eq. (40)
will be crucial to forming stable models and have an impact-
ful effect on the other perturbations that follow. In terms of
the propagation speed, this turns out to be identical to the
f (13) gravity case where gravitational waves propagation at
the speed of light [101].

3.2 Vector (and pseudovector) perturbations

The vector perturbations in the cosmological perturbations
in Eq. (31) are represented by

I:(SeA ] = 0 . algl
® 5’,‘bl a5116ijk0'k ’
where the gauge freedom is fixed by the choice h; = 0.

Using the field equations, we directly obtain the perturbation
equations for the B; and the pseudovector o;

Wi s 0=0i(f5+ /1)
WinG #j): 0=8(fp+ fr)
which for fB + fT # 0 give 0; = 0 and B; = 0. We are

left with two equations that govern the evolution of b; and v;
which are embodied through

(42)

(43)
(44)

WiiGi#j): 0=b;+b; <2H+%>, (45)
T
Woi: 0=b <a(H(6fB +4f7)+4frH —2fp)

K fr

> +avi(6H (f p —2Hfr) + Bfg — f), (46)

which involves only those two components, and where v;
represents the 3-velocity (discussed further in the appendix).
Immediately, it is clear that if this is solved for b;, then it is
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solvable for v; as well. At this stage one can directly see that
the vector perturbations are not propagating since Eq. (45) is
justa constraint equation and can further read off the stability
condition 2H > — log fr. Another important observation is
that , which has exactly the same form as that reported in
Ref. [87] for f(T) gravity with the exception that in our
case f(T) — f(T, B) (and the impact of this on derivative
terms).

If f 3+ f7 = Oitimplies that fr = — fg = — fg which
is the case of f (ﬁ) gravity, where all antisymmetric field
equations are trivialised with Wp,,) = 0. By introducing
Y; := b; — Bi, we end up with the following nonvanishing
field equations

Wij G # ) : 0=Y,-+Y;<2H+J}§) “7)
Woi: 0=av; (6HQHfr + fg)+ Bf — f)
szR)

+ (2a(—2fRH +Hfgr— fr)+ (48)

where fr = df/d R. In this equation we notice that, again,
there are not propagating vector perturbations which is a well
known result in f(R) theories [101].

3.3 Scalar perturbations

Selecting the scalar perturbations of Eq. (31) gives the fol-
lowing linear perturbations

ad; B
Y+ 0;0;h + Eijkaka)

[se*] = [81,-8’19 as! (-

(49)
in which we will adopt the Newtonian gauge where b =
and i = 0. In the following we report the final field equations
but in the appendix, the component calculations that build up

to these results are presented. The symmetric field equations
of the scalar perturbations are given by

) . K B
Woo: «“6p=3Héfp+ a2ty 3fB

2HK?
fTb

1
—6H?Sfr — 5 f16T =

Y 2HSr —3f )+ 2 fT

¥ +6H$QHfr — fp), (50)

Wi # j) w—zpzﬁa(fwfg)b—wg), (51)
Wi k5P =8fp +8f %+£
i BTUBN\327 3

. i 1
—2HSf7 —2(BH? + H)sfr — 5 froT

21 + 29 6Hfr + f1)

242 2k2
Iy = 2y 3T+ b+ $CHSr — )

oo (5

wheredfr = frréT+ frpdB and éfp = fpréT + fpBd B,
while the antisymmetric contributions are

+H- 2f3) +4HfT>
(52)

Woi © k2av(P +p) =8fp —3HSfg + 2 frvr

—2H8fr + QfrH — f )9, (53)
Wio: «%av(P+p)=08fz — HSfp +2frVr

+2(fr+ fp)¥ + QfrH — f )8, (54)
Wio — Woi : 0= H@fr +8f8) + ¥ (fr+ fp). (55

and where the energy—momentum conservation in the case

of dust (for the general case see the Appendix A4) is given

by

Vu ®p"
Vﬂ @,’“ .

5p+3Hsp = 2k + 39 p, (56)
a
av+aHv = —¢. 57

The scalar perturbations are coupled with the perturba-
tions of the energy—momentum components and so this is
not enough information to determine the impact of these cos-
mological perturbations on observational parameters. In the
next section, we will study the matter perturbation equations
to determine the role of f (7T, B) gravity on the growth of
structure in the Universe.

4 Matter perturbation equations in f (T, B) gravity

In this section, we consider dust for the perfect fluid, and
derive the corresponding matter perturbation equations. Fol-
lowing Refs. [101,102], we introduce the variable V := av
and start by defining the density contrast &, as

5p
ém = — +3HV. (58)
P
In order to determine the time derivative of this parameter,
we need to utilize the continuity equation to obtain the density
parameter time derivative, which is

k2pV
a2

8p+3Hsp = +3pv. (59)

The time derivative of the density contrast parameter can then
be written as

v2V
43y 4+ 3(HV), (60)

V= —qb, (61)

Sim

@ Springer
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where the time derivative of V is also presented. By combin-
ing both derivatives, we obtain

Vi .. . : :
—5 + 3V +3(HV) + 6HY + 6HHY).

(62)

S +2HS,, =

In the sub-horizon approximation k >> a H, k being well
inside the Hubble radius, the dominant terms are k£ and §p.
Now that we have all the prerequisites we need to proceed,
let us first summarize the dominant terms in this limit

ook Kk K

{a_2|¢|’a_2|w|’a_2|ﬁ|’a_2|8fT|’a_2|8fB|}

> {H2191. H2 1yl H\BI, H2sfr 1 HA8a1) (63)

and

X| 3 1HX]

where X € {q),w, B, SfT,5f3,¢7¢aBs5fT,5fB}-
(64)

Thus, it follows directly that in Fourier space of the sub-
horizon limit of Eq. (62)

2 2

. . k“¢ K
O +2H6y =~ —— = 4npGefdm = ijeff(sm,

— = (65)

from which it follows that the only contributing scalar is ¢.
Along a similar vein, Xger iS a parameter sensitive to weak
lensing which appears when we write the lensing potential
— (¢ + ¥) in terms of the matter density contrast 8,,, SO Xdef
plays a similar role to Gf but between the lensing potential
and §,, specifically. This parameter is defined as

_ 1 Gesr 4
2o lGa (%)

which we will also calculate in conjunction with Ggr in what
follows. We start from the sub-horizon approximation of the
field equations in Egs. (50) and (56)

(66)

2k2 .
Jr_ 3HfB) v
a

k2 .
+| = —3H | sfs
a

+6H (Hfr — f p)p — 6H?8f7,
Wi : 0=y (fp+ fr)+ Héfp+ Héfr,
Wi #j): 0=—ab(fp+ fr)+8fp+ frv — fro.

Woo : /c26p ~ (

(67)
(68)

(69)
Wi 06fp(18a°H — 4k?) + 12a>(4H* + H)8fr
+4ak>(f g+ f1)b+ (6a>(H(f g —4f 1) +2fB)
4 fr (k2 — 6a>H))p — 4y (frk® +3a*H f 1), (70)

@ Springer

from which we present the fully expanded form of the Wjo;;
component

4H*K(fpp + 2 frp + fr1) ,

W[(),'] 0> — P
N (@(fp+ fr)+12H3(frr + frp)) + 4HK*(fzs + frB)) "
a?
(71
_2H (/s + frp)(k* — 6a>H) — 64> H (frr + f15)) o (12)

a2

Note that Wg;) is actually a constraint equation and so must
be used in the solution process. Consequentially in order
to have a closed system we only need one more equation
from {W;;, Wl.i }, which we choose to be W;;. Henceforth our
system will be comprised of {Woo, W0}, Wi;}. We checked
in every case that the fourth equation Wii was always satisfied.
Before proceeding we define the useful parameters

Il:= f+ fr, (73)
Y := fgp+2fre + frr = + Ip, (74)
8 := fip — frrfep = —Mrlp + frpY. (75)

One could think of IT as the deviation from f (13) gravity
where I1| Fiy = 0. These quantities will help us classify the

f(T, B) models in three branches

1. {IT # const, T # 0}
Which can further be classified using & = —I17I1p +
freY

(a) {IT # const, T # 0, E # 0} most general case of
f(T,B)
(b) {IT # const, Y # 0, E = 0} includes f(T)
2. {IT # const, T = 0}
Which can further be classified using ¥ = 0 = I1p =
—I7 into Eq. (75) as E = % =15

0} O
= 0} the unique f(R) case.

(a) {IT #const, Y =0, E
(b) {Il =const, Y =0, E
The above branches may also be indicators of variable
degrees of freedom (dof), since we know for sure that f (15)
has 3 dof. We also know that f(7) “varies” in between 3-5
maximum dof [103-106].

We will elaborate a bit on the two major conditions & = 0
and T = 0. Starting off with E = 0, it can be solved
using separation of variables if one assumes f(7T, B) =
f1(T) f>(B), then one finds

F(T. B) = fo((B + Bm — Co)(T +mT — Csm)™)ins,
m # —1, (76)
f(T,B) = foe'TT2B = —1, (77)
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where fy, C1, C2, C3, m are constants. Another family of
solutions are of the form f(7, B) = f(®) where ® =
® (T, B) i.e single variable dependence. Popular models of
this type are where ® = R=—T+ Band ® = T which
represent f (I%) and f(T) theories of gravity respectively.
Another form of single variable dependence is f(TB) =
c+/T B which is the only acceptable model of the form
f(TB) = ¢(TB)™. Finally, a less known model of impor-
tance here is

f(T,B)=—-T+ F(B), (78)

which will be used later on the analysis.
As for the condition Y = 0, it is satisfied by a family of
solutions of the form

f(T,B) = fi(R)X + fo(R), (79)

where X = X (7, B) is any function such that X7 + Xp #
0 and Y = 0. The condition X7 + Xp # 0 practically
means that X # X (1%) so that the total solution in Eq. (79)
is not reduced to just f (I%). The most intuitive form would
be X = (clT” + B9 + c3 (TB)’)m and upon enforcing
the aforementioned conditions, the form is reduced to just
X =c1T + c»2B where c1, ¢ € R and ¢ # —cj. One can
easily see that a solution compatible with both E = 0 and
T =0is f(R).

4.1 Branch {IT # const, T # 0, E # 0}
We will start with the most complex case that includes the

full totally non-linear f (7, B) models meaning those which
will allow us to solve the constraint field in Eq. (72) for b as

As —A3(4HY fr — 5T1IT)

that we then substitute into Eqgs. (67) so that we finally end

up with
A1k2 + A2k4 + A3k®
Gett = G : , 82
T 7 A4 + Ask2 + Agk* + A7kS (82)
ALK + Aok* + Ask® + Agk® 4+ Ask!©
Ag + A7k* + Agk* + Aok® + Ajok® + Ay 1k10°
(83)

where all the coefficients A; and A; are presented in the
Appendix B. One can further calculate the leading order
terms of the above quantities by noticing that A3 « &,
A7 o« E are the only coefficients, proportional to E and the
same happens with the coefficients As oc Az and Ay o< A7.
This clarifies our choice for using E as an extra layer in
branching. Hence the leading order parts read respectively

Aj 47
Getf =G-—=-G—— = . (84)
A7 36H*(fpp frr +28) +3Yfr
T
Y= 5 —. (85)
Yfr +12H (fpp frT + 28)

The models in this case assume the most possible gen-
eral form they can from the class of f (T, B), for example

F(T, B) = fi(T) + f2(T) f3(B) + fa(B).
4.2 Branch {IT # const, T # 0, & = 0}

A special case arises if A3 = A7 = 0 which means that
E = 0, giving that the leading order term for the gravitational
effective constant is

Geff = G—, (86)

and for the deflection parameter, we get

A
Y =2
Aqg

CAe 44Aq (—=(HYfr —2NgIl) + 24H3 fpp frr + 12H3 fr(frr — 1))

(87)

(@ 2H3 frr + 1) + 4Hk21'13)w
B 4aH?k?Y
6a>(TgH + H? frr) — K1
+( (I1p {TT) B)¢’ (80)
2aHk*Y
which we replace into Eq. (69) in order to find

b

One can notice that G becomes significantly more com-
plicated since it depends on A; and Ag (see Appendix B),
and for that reason we explicitly calculate it for only two
simple such models. The first one, is the popular f(7T') grav-

2H (6a*T1(Ig H + H” fr7))

SNASS

T Z@ATI(12H3 frr + 1) + 462 HKX(—2T1 g Tl + 12H3 fgp frp + HY fr) — 16H2K*E
2H (a®k*(—T1pT1 — 24H3 fpp frp + 2HY fr + 24HEH) — 4Hk*E)

—a*TT(12H3 frr + 1) 4+ 4a? Hk2 (=211 311 + 12H3 fpp frp + HY fr) — 16H2k4E’

81

@ Springer



53 Page 10 of 16

Eur. Phys. J. C (2021) 81:53

ity models which up to next to leading order we find from
Eq. (86)

a’fr(12H? frr + fr) — 4H?K fr frr
4H fr frr(6a®H f1 + k2 fr)
s _ 3a’ f+8H frr + f1) — SHK? fr frr ,
2fr (a2 fr(2H3 frr = fr) +4HK fr frr)
(89)

Geff = , (88)

that correctly reproduce the usual leading order result Gegr =
—G/fr reported in Refs. [49,66,107]. The other, less known,
model is Eq. (78) for which (86) gives

4HQ2f 5+ H)

Gett = G - ,
o (fp+2H)?

a’fp?+4HK fpp2f g + H)

Y1k2 + Y2k4 + Y3k6 + Y4k8

= , 96
Ys + Yek2 + Y7k* + Ygk® + Yok8 96)
where and to leading order
Yy 1
Y= = O7)

Yo fr+12Hfrp
which is a much simpler form than (87).

4.4 Branch {H =const, X =0, E = HZT = H% = 0}

The condition 1'I2T = 1'[%, = 0 means exactly that [1 = fr +
fB = ¢ which is the condition to obtain f (13) gravity (while

(90)

T = : : EAL : .
3a2fgpfp (H2Of g+ 14H) —3H(f 5 +2H)) + K> fgp(f 5 + 2H)?

oD

4.3 Branch {IT # const, £ = 0, E = I1}. = 1% # 0}

In this branch b completely drops out from Eq. (72) and we
can solve for i as

Y 2HTr (k> — 6a’H)
¢ AHK2TI —a2ll
where we replace this solution into Eq. (69) and solve for b
as

92)

not precisely f (13) gravity when ¢ # 0, it is dynamically
equivalent). This is a pivotal branch because it is the only
one where the antisymmetric part of the field equations is
trivialised Wjp;) = 0 and also b completely drops out the
field equations. We solve W;; for

¥ _ a*(12frgH + [r) — 2k> [rR
¢ a® fr — 4k* frR

next we substitute this in Eq. (67) so that we can proceed and
find as per usual to find

(98)

8k* frr — 2a%k? fr

Geff =

E_

—9a*(fr(4frrH" + Hfg)+4Hfrr f g H) — 2a2k>(—15H frr f g + 9 fr frr H + £2) + 6k* fr frr
6k* fri — 2a2k2(6 frr H + fr)

99)

9t (fr(AfRRH” + Hfg) +4H frp f pH) — 2a2k2(—15H frp f x + 9 fr frrH + f2) + 6k* fr frr

(100)

fr (2HTI7 (60> H + k) — a*T1) + 2T1(k* — 64 H)(frp + T7) )
o aqQ.
(4HK Ty — a®I1)?

93)

Next we substitute both in Eq. (67) so that we can proceed
and find G¢r as

Zlk2 + Z2k4 + Z3k6
Zs + Zsk? + Zek* + Z7k6°
where again we omitted the rest of the cumbersome coeffi-

cients. The leading order contribution is then

Z3 4
G =G— = -G . 95
= T T i ) ©2)
In the same manner, we also calculate the deflection param-
eter

Getr = G 94)

@ Springer

If one further employs the approximation |X| ~ H|X|
where X denotes background quantities, in conjunction with
the matter dominated approximation | fg/(H 2frr)| >> 0
then one will straightforwardly recover

4 1
Gett ~ G | — + , (101)
' <3fR 3(—fr +3’;—§fRR>>
1
X~ —. 102
SR (102)

which are the typical f (13) results [101,102] for Gefr and X.
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5 Conclusion and discussion

TG offers a novel approach to gravitation where curvature
is replaced by teleparallel torsion giving a new framework
in which to produce gravitational models. f (7, B) gravity
is a particularly interesting expression of TG in which the
second and fourth order contributions to the Ricci scalar are
separated. This offers a new perspective on modified theories
of gravity such as f (I(é) gravity which now become a sub-
class of this more general approach to modifying gravity.

One of the core exhibitions of any modified theory of grav-
ity is in its cosmological perturbations which expression the
linear perturbation degrees of freedom of the metric tensor.
Despite TG being based on the tetrad, the degrees of freedom
are inherited from the metric due to the close relationship they
share. The result is that the tetrad has ten degrees of freedom
at linear perturbation and produces the regular decoupling
of scalar, vector and tensor perturbations. Another potential
obstacle to obtaining the cosmological perturbations appears
when forming the correct tetrad at perturbative level since
this must be a good tetrad both at background level and lin-
ear perturbative level. The full SVT perturbation appears in
Eq. (31) which produces perturbation equations which satisfy
the antisymmetric conditions of Eq. (16) while reproducing
the metric through Eq. (1).

In this work, we explore these cosmological perturbations
in the context of f (7, B) gravity by first exploring the
tensor perturbations in Eq. (38). The associated gravita-
tional wave propagation equation in Eq. (39) results as
the generic wave equation for gravitational waves in the
f(T, B) gravity context. The immediate result of this
propagation equation is that gravitational waves propagate
at the speed of light which is in good agreement with
recent multimessenger measurements. The other property
that emerges out of this propagation equation is the ampli-
tude modulation by the frictional term v. This remains out-
side of present observations but something interesting is
that the expression that results is very similar to the f(7T)
result, as one can observe by taking this limit in Eq. (40).

The Planck mass run rate turns out to be present in the
vector perturbation equations as given in Eq. (46). Vector
perturbations are not expressed in observations and so offer
a consistency check on the particular choice of models that
are viable in f (7T, B) gravity. This would favor a low Planck
mass run rate. Finally, we explored the scalar perturbations
in Sect. 3.3 within the Newtonian gauge. In this subsection,
the evolution equations of the gravitational perturbations are
presented. In Sect. 4 the matter perturbations are fully devel-
oped in order to arrive at the matter perturbation equation of
Eq. (62). Our interest lies in the subhorizon limit where the
limits of Egs. (63) and (64) apply. These limits produce the
Meszaros equation in Eq. (65) which reflects the growth of
matter perturbations which is shown in Fourier space.

An important property of the Meszaros equation is that
it produces an effective gravitational constant Geg which
governs the growth of structures in the Universe. In f (T, B)
gravity, it turns out that this effective gravitational constant is
expressed through 3 branches that depend on whether IT and
Y vanish (defined in Egs. (73) and (74)). It is interesting to
note that these branches correspond to separating separable
terms and mixed terms, as well as the pure f (Icé) gravity sce-
nario where f (IE’) = f(—T + B). The appearance of mixed
terms has been shown to play an important role in the cos-
mology of f(T, B) gravity [58,60,65,108]. In this light, the
branching of f (7T, B) gravity is not entirely unexpected. The
core results for these branches are given by Egs. (82), (86)
and (94) which are also respectively given in their leading
order subhorizon limit. Through this prism, the differences
between the various f (7, B) gravity literature models can
be better interpreted through this branching behaviour.

The next generation of cosmology surveys from upcoming
observatories (such as the Euclid Mission, Square Kilome-
tre Array project and the Large Synoptic Survey Telescope,
among others) will shed further light on the evolution of
structure formation over the history of the Universe and may
offer new signatures of modified gravity. f (7T, B) gravity
offers a rich landscape in which to study observational cos-
mology and may resolve some of the tensions in present day
cosmology.
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Appendix A: Cosmological perturbations

This section is devoted in presenting the most important
quantities needed for the cosmological perturbations.

1 Background

The non-zero components of the torsion tensor and superpo-
tential, and the torsion and boundary term in the background
(flat FLRW) are

T'o; = H8'j, (A1)
5% = —H§', (A2)
T = —6H, (A3)
B = —6(3H?+ H). (A4)

The matter content is fully conserved giving the standard
conservation equation for a perfect fluid

Vv0," 1 p+3(p+P)=0. (A5)

2 Tensor perturbations

The non-zero components of the torsion tensor and the super-
potential are

. 1.
5T o) = Shij, (A6)
. 1
8T jk = E(ajhik — Okhij), (A7)
8850% =0, (A8)
1.
08:% = Jhij, (A9)
. 1
k
88;7% = —m(ajhik — Okhij), (A10)
while the scalars are
8T =0, 8B =0. (Al1)

3 Vector and pseudovector perturbations

The non-zero components of the vectorial and pseudo vecto-
rial perturbations for the torsion tensor and the superpotential
are

8T%; = ap;, (A12)
8T'o; = 20;h; — éajbi — €ijOk. (A13)
5T%; = a(®:B; — 9. (Al4)
ST jx = 280y — 8;9kh j) + €:10k01 — €xid oy, (A15)
350" = =5 LaH by — i) + €indhor], (A16)

@ Springer
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85,9 = % B(ai(bj +Bj —ahj)+djb; — Bi _ahi))] ,
(A17)
8SoH = —é[&i(bj — Bj +2ah;)
—dj(bj — Bi +2ah;) — 2ae;;67], (A18)
357% = = imesgidton + 3y CaH br — o)
—aPy —20%hy) — 8 QaH (b; — B;) — ab;
—20%h ) — 2800y j + 2819;9 ], (A19)

and the perturbations related to the torsion and boundary term
scalars are

8T =0,
8B =0.

(A20)
(A21)

4 Scalar and pseudo scalar perturbations

The components of the torsion tensor and the superpotential
for scalar and pseudo scalar perturbations up to first order
are

8T i = d;(aP — ), (A22)
8T'0; = 8;0;(h —a~'b) — €;jd6 — ¥dij, (A23)
8T%; =0, (A24)
8T' jk = 8ijhyr — Sixdjr
+6i1(€kim 9 Om0 — €jim Ok Omo), (A25)
. H
850" = =0, (b~ B~ (@H)™'y), (A26)
a
0j ; 1 ;1
65" = [@H® + o + 50:9;( —a™'b)
1.
—5 9% —a—lb)aij], (A27)
N .
8§80 = za—zeijkako‘, (A28)
Jk— _~ |[s.9. _ i —
85,7 = 5 [s,ka, (ZaH(b B +é—y aﬁ)
— 80 (2aH(b — B+ — — aﬁ')], (A29)

and the perturbations up to first order to the scalar torsion
and boundary term become

5T = 4H<3H¢ 43+ éazb - 32/1), (A30)
5B = —[H Gaz(@s — 10b) — 6(6y + ¢ — 202 + 6H¢)>
2, .2,
+20% (B —B) + >y — )
a a

12(3%h — 6H¢ — 3&)]. (A31)
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Then, the perturbation conservation equations become

. 2u(P +
GO0k = 8p +3HGP + ) + 2L HP)
a

=39/ (P + p) + %h(P 4 p) = 0,
V0, = [SP +(o+ P)(4aH(b fo—p)

(A32)

+¢+a(B—B+D))+a(/5—|—15)(v+b—,3)]:0.

(A33)
5 Sub-horizon limit in the Newtonian gauge
4H
5T ~ — 21 (kzb _3aH®W + ¢)> (A34)
a
2k*
6B >~ ——-(2abH — 2y + ¢) (A35)
a

2k2
Sfr ~ - (2abH (fre + frr) + fre(d —2v))

(A36)
2k?
3fp =~ -7 (2abH (fpp + fr) + fB(P —2¥)).
(A37)
Appendix B: G calculations
1 Branch A
Ay = —a*YTI(IT + 12H fr7), (B1)
Ay = —4a’ HY (2T 3T1 — 12H° fp frz — HY fr),
(B2)
Az = —16H?EY, (B3)
Ay = —3a°TI(T1 + M7)| (B4)
x ' (6H (N — frp) +6H*HGB frp — Tp)
+ 18H*(Ty — frp) — H* fr — H f7) (BS)
+ 6H?[H(—24H>(frp — Ip)
x (frp — Nr) + Mg fr) + HIT (B6)
— 12HH*(frp(Tlp — frp) + ©)
+H*QHfr + f)(frs — )] (B7)
A7 = 12H*E(12H*(fgB frr +28) + Yfr). (B8)
A1 = —a*ATI12HTIgH — TD), (B9)
As = a*(—2HTIgT1(6a2 Ay H — 5A;) + a® A, TT
+ 8A1H>(=Yfr — 6EH)), (B10)
Az = a*AsTT® — 22 HTIT1(6a% A3 H — 5A,)
+8H*(a®A>(=Yfr —6EH) + 3A B), (B11)

Ay =2HAH @ A3(=Yfr —6EH) + 3A,E)

+ 5a% A3TIgI0), (B12)
As = 24A3H’E, (B13)
A¢ = 2a*A4TI(TT + 12H frr), (B14)

A7 =2a*(T1(a*As(TT + 12H° frr) + 8A4HT1p)) (B15)
+96A4H* (f5 frr + B)
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