4 research outputs found

    Influence of internal disorder on the superconducting state in the organic layered superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br

    Full text link
    We report high-sensitivity AC susceptibility measurements of the penetration depth in the Meissner state of the layered organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br. We have studied nominally pure single crystals from the two different syntheses and employed controlled cooling procedures in order to minimize intrinsic remnant disorder at low temperatures associated with the glass transition, caused by ordering of the ethylene moieties in BEDT-TTF molecule at T_G = 75 K. We find that the optimal cooling procedures (slow cooling of -0.2 K/h or annealing for 3 days in the region of T_G) needed to establish the ground state, depend critically on the sample origin indicating different relaxation times of terminal ethylene groups. We show that, in the ground state, the behavior observed for nominally pure single crystals from both syntheses is consistent with unconventional d-wave order parameter. The in-plane penetration depth lambda_in(T) is strongly linear, whereas the out-of-plane component lambda_out(T) varies as T^2. In contrast, the behavior of single crystals with long relaxation times observed after slow (-0.2 K/h) cooling is as expected for a d-wave superconductor with impurities (i.e. lambda_in(T) propto lambda_out(T) propto T^2) or might be also reasonably well described by the s-wave model. Our results might reconcile the contradictory findings previously reported by different authors.Comment: 13 pages, 10 figures, submitted to Phys. Rev.

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Hydrogel-Based Controlled Release Formulations: Designing Considerations, Characterization Techniques and Applications

    No full text
    corecore