76 research outputs found

    MicroRNA profile before and after antiviral therapy in liver transplant recipients for Hepatitis C virus cirrhosis

    Get PDF
    BACKGROUND AND AIM: Management of Hepatitis C virus (HCV) recurrence is a major challenge after liver transplantation. Significant dysregulated expression of HCV receptors (i.e. claudin-1, occludin, CD81, Scavenger-receptor Type B1) has been shown recently during HCV infection. This might facilitate hepatocytic entry and reinfection of HCV. MicroRNAs (miRs) play role in the regulation of gene expression. We aimed to characterize miR expression profiles related to HCV infection and antiviral therapy in adult liver transplant recipients, with special emphasis on microRNAs predicted to target HCV receptors. METHODS: Twenty-eight adult liver transplant recipients were enrolled in the study. Paired biopsies were obtained at the time of HCV recurrence and at the end of antiviral treatment. MicroRNAs for HCV receptors were selected using target prediction software. Expression levels of miR-21, miR-23a miR-34a, miR-96, miR-99a*, miR-122, miR-125b, miR-181a-2*, miR-194, miR-195, miR-217, miR-221 and miR-224 were determined by RT-qPCR. RESULTS: miR-99a* and miR-224 expressions were increased in HCV recurrence samples, while miR-21 and miR-194 were decreased in comparison to normal liver tissue. Increased expressions of miR-221, miR-224 and miR-217 were observed in samples taken after antiviral therapy when compared with HCV recurrence samples. High HCV titer at recurrence was associated with higher level of miR-122. CONCLUSIONS: Samples at recurrence of HCV and after antiviral therapy revealed distinct HCV-related microRNA expression profiles, with significant dysregulation of those miRNAs potentially targeting mRNAs of HCV receptors. In particular, miR-194 and miR-21 might be involved in the regulation of HCV receptor proteins' expression during HCV infection and antiviral therapy

    Fluorescence activated cell sorting followed by small RNA sequencing reveals stable microRNA expression during cell cycle progression.

    Get PDF
    BACKGROUND: Previously, drug-based synchronization procedures were used for characterizing the cell cycle dependent transcriptional program. However, these synchronization methods result in growth imbalance and alteration of the cell cycle machinery. DNA content-based fluorescence activated cell sorting (FACS) is able to sort the different cell cycle phases without perturbing the cell cycle. MiRNAs are key transcriptional regulators of the cell cycle, however, their expression dynamics during cell cycle has not been explored. METHODS: Following an optimized FACS, a complex initiative of high throughput platforms (microarray, Taqman Low Density Array, small RNA sequencing) were performed to study gene and miRNA expression profiles of cell cycle sorted human cells originating from different tissues. Validation of high throughput data was performed using quantitative real time PCR. Protein expression was detected by Western blot. Complex statistics and pathway analysis were also applied. RESULTS: Beyond confirming the previously described cell cycle transcriptional program, cell cycle dependently expressed genes showed a higher expression independently from the cell cycle phase and a lower amplitude of dynamic changes in cancer cells as compared to untransformed fibroblasts. Contrary to mRNA changes, miRNA expression was stable throughout the cell cycle. CONCLUSIONS: Cell cycle sorting is a synchronization-free method for the proper analysis of cell cycle dynamics. Altered dynamic expression of universal cell cycle genes in cancer cells reflects the transformed cell cycle machinery. Stable miRNA expression during cell cycle progression may suggest that dynamical miRNA-dependent regulation may be of less importance in short term regulations during the cell cycle

    Neuronal cell types in the thalamic intralaminar central lateral nucleus of the cat

    No full text
    The existence of Golgi type II neurons was verified in the anterior intralaminar central lateral (CL) nucleus of the cat thalamus, and its projection cell types were identified, by means of Golgi impregnation. CL principal neurons were found to display a large- or medium-sized cell body and a radiate dendritic pattern. Their primary dendrites were limited in number, and had a rather long course; they were poorly ramified. The axons of principal neurons were impregnated only occasionally and for a short distance. Projection neurons of the 'bushy' or tufted type, described in the main thalamic sensory nuclei, were not identified in the CL in the present study. Typical Golgi type II neurons were found throughout CL. They were mainly small-sized, and displayed a rich dendritic arborization characterized by dendritic appendages. The axons of Golgi type II neurons were seen to give rise to extensive local arborizations. The present findings indicate that in the cat CL, principal cells are mainly represented by radiate neurons. Typical local circuit neurons also are evident in CL, suggesting that the activity of anterior intralaminar structures is regulated by intrinsic mechanisms similar to those operating in the main thalamic relay nuclei

    Integrative molecular bioinformatics study of human adrenocortical tumors : microRNA, tissue-specific target prediction, and pathway analysis.

    No full text
    MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too
    corecore