169 research outputs found
Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum
The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN) that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory drive from Purkinje cells (PCs). There are two excitatory inputs to DN, mossy fiber and climbing fiber collaterals, but neither of them appears to have sufficient strength for generation of burst activity in DN. Therefore, we can assume two possible mechanisms: post-inhibitory rebound excitation and disinhibition. If rebound excitation works, phasic excitation of PCs and a concomitant inhibition of DN cells should precede the excitation of DN cells. On the other hand, if disinhibition plays a primary role, phasic suppression of PCs and activation of DN cells should be observed at the same timing. To examine these two hypotheses, we compared the activity patterns of PCs in the cerebrocerebellum and DN cells during step-tracking wrist movements in three Japanese monkeys. As a result, we found that the majority of wrist-movement-related PCs were suppressed prior to movement onset and the majority of wrist-movement-related DN cells showed concurrent burst activity without prior suppression. In a minority of PCs and DN cells, movement-related increases and decreases in activity, respectively, developed later. These activity patterns suggest that the initial burst activity in DN cells is generated by reduced inhibition from PCs, i.e., by disinhibition. Our results indicate that suppression of PCs, which has been considered secondary to facilitation, plays the primary role in generating outputs from DN. Our findings provide a new perspective on the mechanisms used by PCs to influence limb motor control and on the plastic changes that underlie motor learning in the cerebrocerebellum
Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I
Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem
cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency
of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset
have improved outcome, suggesting to administer such therapy as early as possible. Given that
the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases
Classification of minimal actions of a compact Kac algebra with amenable dual
We show the uniqueness of minimal actions of a compact Kac algebra with
amenable dual on the AFD factor of type II. This particularly implies the
uniqueness of minimal actions of a compact group. Our main tools are a Rohlin
type theorem, the 2-cohomology vanishing theorem, and the Evans-Kishimoto type
intertwining argument.Comment: 68 pages, Introduction rewritten; minor correction
On infinite-volume mixing
In the context of the long-standing issue of mixing in infinite ergodic
theory, we introduce the idea of mixing for observables possessing an
infinite-volume average. The idea is borrowed from statistical mechanics and
appears to be relevant, at least for extended systems with a direct physical
interpretation. We discuss the pros and cons of a few mathematical definitions
that can be devised, testing them on a prototypical class of infinite
measure-preserving dynamical systems, namely, the random walks.Comment: 34 pages, final version accepted by Communications in Mathematical
Physics (some changes in Sect. 3 -- Prop. 3.1 in previous version was
partially incorrect
Efficacy and safety of enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome (mucopolysaccharidosis IVA): a phase 3 randomised placebo-controlled study.
ObjectiveTo assess the efficacy and safety of enzyme replacement therapy (ERT) with BMN 110 (elosulfase alfa) in patients with Morquio A syndrome (mucopolysaccharidosis IVA).MethodsPatients with Morquio A aged ≥5 years (N = 176) were randomised (1:1:1) to receive elosulfase alfa 2.0 mg/kg/every other week (qow), elosulfase alfa 2.0 mg/kg/week (weekly) or placebo for 24 weeks in this phase 3, double-blind, randomised study. The primary efficacy measure was 6-min walk test (6MWT) distance. Secondary efficacy measures were 3-min stair climb test (3MSCT) followed by change in urine keratan sulfate (KS). Various exploratory measures included respiratory function tests. Patient safety was also evaluated.ResultsAt week 24, the estimated mean effect on the 6MWT versus placebo was 22.5 m (95 % CI 4.0, 40.9; P = 0.017) for weekly and 0.5 m (95 % CI -17.8, 18.9; P = 0.954) for qow. The estimated mean effect on 3MSCT was 1.1 stairs/min (95 % CI -2.1, 4.4; P = 0.494) for weekly and -0.5 stairs/min (95 % CI -3.7, 2.8; P = 0.778) for qow. Normalised urine KS was reduced at 24 weeks in both regimens. In the weekly dose group, 22.4 % of patients had adverse events leading to an infusion interruption/discontinuation requiring medical intervention (only 1.3 % of all infusions in this group) over 6 months. No adverse events led to permanent treatment discontinuation.ConclusionsElosulfase alfa improved endurance as measured by the 6MWT in the weekly but not qow dose group, did not improve endurance on the 3MSCT, reduced urine KS, and had an acceptable safety profile
Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites
Peer reviewedPublisher PD
Diagnosing mucopolysaccharidosis IVA
Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is an autosomal recessive lysosomal storage disorder resulting from a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) activity. Diagnosis can be challenging and requires agreement of clinical, radiographic, and laboratory findings. A group of biochemical genetics laboratory directors and clinicians involved in the diagnosis of MPS IVA, convened by BioMarin Pharmaceutical Inc., met to develop recommendations for diagnosis. The following conclusions were reached. Due to the wide variation and subtleties of radiographic findings, imaging of multiple body regions is recommended. Urinary glycosaminoglycan analysis is particularly problematic for MPS IVA and it is strongly recommended to proceed to enzyme activity testing even if urine appears normal when there is clinical suspicion of MPS IVA. Enzyme activity testing of GALNS is essential in diagnosing MPS IVA. Additional analyses to confirm sample integrity and rule out MPS IVB, multiple sulfatase deficiency, and mucolipidoses types II/III are critical as part of enzyme activity testing. Leukocytes or cultured dermal fibroblasts are strongly recommended for enzyme activity testing to confirm screening results. Molecular testing may also be used to confirm the diagnosis in many patients. However, two known or probable causative mutations may not be identified in all cases of MPS IVA. A diagnostic testing algorithm is presented which attempts to streamline this complex testing process
Synthetic beta cells for fusion-mediated dynamic insulin secretion
Generating artificial pancreatic beta cells by using synthetic materials to mimic glucose-responsive insulin secretion in a robust manner holds promise for improving clinical outcomes in people with diabetes. Here, we describe the construction of artificial beta cells (AβCs) with a multicompartmental 'vesicles-in-vesicle' superstructure equipped with a glucose-metabolism system and membrane-fusion machinery. Through a sequential cascade of glucose uptake, enzymatic oxidation and proton efflux, the AβCs can effectively distinguish between high and normal glucose levels. Under hyperglycemic conditions, high glucose uptake and oxidation generate a low pH (<5.6), which then induces steric deshielding of peptides tethered to the insulin-loaded inner small liposomal vesicles. The peptides on the small vesicles then form coiled coils with the complementary peptides anchored on the inner surfaces of large vesicles, thus bringing the membranes of the inner and outer vesicles together and triggering their fusion and insulin 'exocytosis'
- …