33 research outputs found

    RELAXATION PHENOMENA AT THE AIR-WATER INTERFACE WITH SURFACTANTS

    Get PDF
    Work is focused on experimental determination of dynamic mechanical properties (i.e. compressibility and relaxation parameters) of the air-water interface during compression in the presence of DPPC monolayer. The surface dynamics was studied with the Langmuir-Wilhelmy balance in several temperatures. The influence of another surfactant (CTAB) present in the aqueous subphase on the surface with DPPC was also investigated. Discussion of the results is based on the concepts of surface rheology and physical chemistry of the interface

    Evaluation and Mitigation of Carbon Footprint of Medical Inhalers

    Get PDF
    Pressurized metered dose inhalers (pMDIs) contain propellants with high Global Warming Potential. This paper compares six pMDI products from the Polish market in terms of their contribution to environmental burden by analyzing the release and residuals of greenhouse gases during use and disposal. The results show that these similar medical products have markedly different carbon footprint values (12-22.5 kg CO2e), which might be mitigated by certain measures involving technical and legal actions

    Preparation and Characterization of Biocompatible Polymer Particles as Potential Nanocarriers for Inhalation Therapy

    Get PDF
    Aim. Investigation of the possibility of manufacturing biocompatible polymer particles which have the required properties for pulmonary delivery via inhalation and simultaneously act as vehicles of nanotherapeutics. Methods. Nanostructures were obtained from biocompatible polysaccharides by successive oxidation and reactive coiling in the aqueous phase. The resultant nanosuspensions of PAD (polyaldehyde dextran) and DACMC (dialdehyde carbomethylcellulose) were used as precursors in spray drying production of powders at variable process conditions. The resultant dry microparticles were characterized by SEM observations, and their properties related to delivery by inhalation were determined by laser diffraction spectrometry following the dispersion in the commercial inhaler. Finally, the possibility of the reconstitution of nanosuspensions by powders rehydration was evaluated. Results. Synthesized nanoparticles had size of 120–170 nm. Microparticles after drying had size of 0.5–5 µm and different surface morphology. Aerosolized particles obtained from powder dispersion in the inhaler had the volumetric median diameter of ~2 and ~1 µm for PAD and DACMC, respectively. Hydration of powders led to restoring the nanosuspensions with the average particle size similar to the precursor. Conclusions. PAD and DACMC can be used to obtain nanostructures which, after processing, take a form suitable for effective delivery to the lungs via inhalation

    b-tagging in DELPHI at LEP

    Get PDF
    Abstract: The standard method used for tagging b-hadrons in the DELPHI experiment at the CERN LEP Collider is discussed in detail. The main ingredient of b-tagging is the impact parameters of tracks, which relies mostly on the vertex detector. Additional information, such as the mass of particles associated to a secondary vertex, significantly improves the selection efficiency and the background suppression. The paper describes various discriminating variables used for the tagging and the procedure of their combination. In addition, applications of b-tagging to some physics analyses, which depend crucially on the performance and reliability of b-tagging, are described briefly

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
    corecore