15 research outputs found

    Evaluation of a New In Vitro Cell Selection Technique

    No full text

    First Report of the Production of Mycotoxins and Other Secondary Metabolites by Macrophomina phaseolina (Tassi) Goid. Isolates from Soybeans (Glycine max L.) Symptomatic with Charcoal Rot Disease

    No full text
    Macrophomina phaseolina (Tassi) Goid., the causal agent of charcoal rot disease of soybean, is capable of causing disease in more than 500 other commercially important plants. This fungus produces several secondary metabolites in culture, including (-)-botryodiplodin, phaseolinone and mellein. Given that independent fungal isolates may differ in mycotoxin and secondary metabolite production, we examined a collection of 89 independent M. phaseolina isolates from soybean plants with charcoal rot disease using LC-MS/MS analysis of culture filtrates. In addition to (-)-botryodiplodin and mellein, four previously unreported metabolites were observed in >19% of cultures, including kojic acid (84.3% of cultures at 0.57–79.9 µg/L), moniliformin (61.8% of cultures at 0.011–12.9 µg/L), orsellinic acid (49.4% of cultures at 5.71–1960 µg/L) and cyclo[L-proline-L-tyrosine] (19.1% of cultures at 0.012–0.082 µg/L). In addition, nine previously unreported metabolites were observed at a substantially lower frequency (<5% of cultures), including cordycepin, emodin, endocrocin, citrinin, gliocladic acid, infectopyron, methylorsellinic acid, monocerin and N-benzoyl-L-phenylalanine. Further studies are needed to investigate the possible effects of these mycotoxins and metabolites on pathogenesis by M. phaseolina and on food and feed safety, if any of them contaminate the seeds of infected soybean plants

    , sp. nov., is an emerging root-associated pathogen responsible for taproot decline of soybean in the southern United States

    No full text
    Taproot decline (TRD) is a disease of soybean that has been reported recently from the southern United States (U.S.). Symptoms of TRD include foliar interveinal chlorosis followed by necrosis. Darkened, charcoal-colored areas of thin stromatic tissue are evident on the taproot and lateral roots along with areas of necrosis within the root and white mycelia within the pith. Upright stromata typical of can be observed on crop debris and emerging from infested roots in fields where taproot decline is present, but these have not been determined to contain fertile perithecia. Symptomatic plant material was collected across the known range of the disease in the southern U.S., and the causal agent was isolated from roots. Four loci, ⍺-actin (), β-tubulin (), the nuclear rDNA internal transcribed spacers (nrITS), and the RNA polymerase subunit II (), were sequenced from representative isolates. Both maximum likelihood and Bayesian phylogenetic analyses showed consistent clustering of representative TRD isolates in a highly supported clade within the species complex in the HY clade of the family Xylariaceae, distinct from any previously described taxa. In order to understand the origin of this pathogen, we sequenced herbarium specimens previously determined to be based on morphology and xylariaceous endophytes collected in the southern U.S. Some historical specimens from U.S. herbaria collected in the southern region as saprophytes as well as a single specimen from Martinique clustered within the TRD clade in phylogenetic analyses, suggesting a possible shift in lifestyle. The remaining specimens that clustered within the family Xylariaceae, but outside of the TRD clade, are reported. Both morphological evidence and molecular evidence indicate that the TRD pathogen is a novel species, which is described as

    Data from: Development and validation of a weather-based warning system to advise fungicide applications to control dollar spot on turfgrass

    No full text
    Dollar spot is one of the most common diseases of golf course turfgrass and numerous fungicide applications are often required to provide adequate control. Weather-based disease warning systems have been developed to more accurately time fungicide applications; however, they tend to be ineffective and are not currently in widespread use. The primary objective of this research was to develop a new weather-based disease warning system to more accurately advise fungicide applications to control dollar spot activity across a broad geographic and climactic range. The new dollar spot warning system was developed from data collected at field sites in Madison, WI and Stillwater, OK in 2008 and warning system validation sites were established in Madison, WI, Stillwater, OK, Knoxville, TN, State College, PA, Starkville, MS, and Storrs, CT between 2011 and 2016. A meta-analysis of all site-years was conducted and the most effective warning system for dollar spot development consisted of a five-day moving average of relative humidity and average daily temperature. Using this model the highest effective probability that provided dollar spot control similar to that of a calendar-based program across the numerous sites and years was 20%. Additional analysis found that the 20% spray threshold provided comparable control to the calendar-based program while reducing fungicide usage by up to 30%, though further refinement may be needed as practitioners implement this warning system in a range of environments not tested here. The weather-based dollar spot warning system presented here will likely become an important tool for implementing precision disease management strategies for future turfgrass managers, especially as financial and regulatory pressures increase the need to reduce pesticide usage on golf course turfgrass

    Draft genome sequence of Xylaria sp., the causal agent of taproot decline of soybean in the southern United States

    No full text
    The draft genome of Xylaria sp. isolate MSU_SB201401, causal agent of taproot decline of soybean in the southern U.S., is presented here. The genome assembly was 56.7 Mb in size with an L50 of 246. A total of 10,880 putative protein-encoding genes were predicted, including 647 genes encoding carbohydrate-active enzymes and 1053 genes encoding secreted proteins. This is the first draft genome of a plant-pathogenic Xylaria sp. associated with soybean. The draft genome of Xylaria sp. isolate MSU_SB201401 will provide an important resource for future experiments to determine the molecular basis of pathogenesis
    corecore