15 research outputs found

    Anticoccidial Vaccination Is Associated with Improved Intestinal Health in Organic Chickens

    Get PDF
    Simple Summary In recent years, the number of organic chicken farms has increased. Chickens can be infected by single-cell parasites, coccidia, which cause lesions in the lining of the intestine leading to poor growth and sometimes death (coccidiosis). This infection can also lead to overgrowth in the intestine of a bacterium, Clostridium perfringens, that may cause further damage (necrotic enteritis). Prevention is often achieved by adding substances in the feed that will slow down the development of parasites and bacteria, but this is not allowed in organic farming. The aim of this study was to investigate if vaccination against coccidia can prevent these diseases in organic chickens. Vaccinated chickens developed milder gut lesions, had fewer and less damaging C. perfringens, and had similar or higher body weight compared to unvaccinated chickens six weeks after vaccination. No deaths from coccidiosis or necrotic enteritis occurred among vaccinated chickens while some unvaccinated chickens died from these diseases. We conclude that vaccination against coccidia benefits organic chickens. This study provides knowledge supporting further development of the organic chicken industry. The results are also of relevance to the management of coccidiosis and necrotic enteritis in conventional broilers. Eimeria spp. and Clostridium perfringens (CP) are pathogens associated with coccidiosis and necrotic enteritis (NE) in broiler chickens. In this study we evaluated the effect of anticoccidial vaccination on intestinal health in clinically healthy organic Ross 308 chickens. On each of two farms, one unvaccinated flock (A1 and B1) was compared to one vaccinated flock (A2 and B2) until ten weeks of age (WOA). Faecal oocysts were counted weekly, and species were identified by PCR (ITS-1 gene). Lesion scoring, CP quantification and PCR targeting the CP NetB toxin gene were performed at three, four, and six WOA and chickens were weighed. Necropsies were performed on randomly selected chickens to identify coccidiosis/NE. Oocyst shedding peaked at three WOA in all flocks. Later oocyst shedding (E. tenella/E. maxima) in unvaccinated flocks at 5-7 WOA coincided with coccidiosis/NE. Although results differed somewhat between farms, vaccination was associated with lower intestinal lesion scores, reduced caecal CP counts, lower proportions of netB-positive CP, lower body weight at three-four WOA, and similar or slightly increased body weight at six WOA. In conclusion, the intestinal health of organic broilers can benefit from anticoccidial vaccination when oocyst exposure levels are high

    Questionnaire study suggests grave consequences of infectious laryngotracheitis, infectious coryza and mycoplasmosis in small chicken flocks

    Get PDF
    BackgroundA growing number of people in western countries keep small chicken flocks. In Sweden, respiratory disease is a common necropsy finding in chickens from such flocks. A respiratory real-time polymerase chain reaction (PCR) panel was applied to detect infectious laryngotracheitis virus (ILTV), Avibacterium paragallinarum (A. paragallinarum) and Mycoplasma gallisepticum (M. gallisepticum) in chickens from small flocks which underwent necropsy in 2017-2019 and had respiratory lesions. Owners (N = 100) of PCR-positive flocks were invited to reply to a web-based questionnaire about husbandry, outbreak characteristics and management.ResultsResponse rate was 61.0%. The flocks were from 18 out of Sweden's 21 counties indicating that respiratory infections in small chicken flocks are geographically widespread in Sweden. Among participating flocks, 77.0% were coinfected by 2-3 pathogens; 91.8% tested positive for A. paragallinarum, 57.4% for M. gallisepticum and 50.8% for ILTV. Larger flock size and mixed-species flock structure were associated with PCR detection of M. gallisepticum (P = 0.00 and P = 0.02, respectively). Up to 50% mortality was reported by 63.9% of respondents. Euthanasia of some chickens was carried out in 86.9% of the flocks as a result of the outbreaks. Full clinical recovery was reported by 39.3% of owners suggesting chronic infection is a major challenge in infected flocks. Live birds had been introduced in many flocks prior to outbreaks, which suggested these as an important source of infection. Following the outbreaks, 36.1% replaced their flocks with new birds and 9.8% ceased keeping chickens.ConclusionsThis study highlights the severity of respiratory outbreaks in small non-commercial chicken flocks and points to the need for more research and veterinary assistance to prevent and manage respiratory infections in small chicken flocks

    Chlamydia pecorum Associated With an Outbreak of Infectious Keratoconjunctivitis in Semi-domesticated Reindeer in Sweden

    Get PDF
    Infectious keratoconjunctivitis (IKC), the most common ocular disease in ruminants worldwide, has affected semi-domesticated Eurasian reindeer (Rangifer tarandus tarandus) for over 100 years, both as individual cases and in outbreaks affecting tens to hundreds of animals. Recurrent IKC outbreaks have been affecting a semi-domesticated reindeer herd in Ă–stra Kikkejaure (Norrbotten county, Sweden) from 2014. The latest episode of these recurrent outbreaks, in winter 2016/2017, was investigated in this study. Clinical findings were in line with previous reports of IKC in semi-domesticated reindeer and the clinical signs displayed by the affected animals (n = 30) included increased lacrimation, follicular conjunctivitis, purulent secretions around the affected eyes and corneal edema. Laboratory analyses of the samples revealed the presence of Chlamydiaceae in most samples obtained from the clinically affected animals (98.3%, n = 60), but also a high seroprevalence of cervid herpesvirus 2 (CvHV2) antibodies (56.6%, n = 53). Moraxella bovoculi was isolated from nine IKC-affected animals during the outbreak (45.0%, n = 20). All affected animals were treated with long-acting antibiotics and recovered from the disease, testing negative for the presence of Chlamydiaceae DNA by PCR 16 days and 3 months after the initial treatment. For the first time, Chlamydia pecorum was identified in semi-domesticated reindeer, and the involvement of Chlamydiaceae in a clinical outbreak of IKC is reported. The CvHV2 seroprevalence (56.6%) and the data obtained from a previous outbreak in 2014 also suggest the involvement of the reindeer alphaherpesvirus in the recurrent outbreaks

    Chlamydia psittaci in garden birds in Sweden

    No full text
    Increased numbers of human infections with Chlamydia psittaci have been associated with bird feeding activities in southern Sweden. Information on occurrence and genotype of C. psittaci in garden birds in Sweden is required to corroborate this finding but data are limited. Additionally, pathogenicity of C. psittaci for garden birds is poorly understood. In this study, C. psittaci infection was investigated in 275 garden birds representing 22 species submitted for wildlife disease surveillance between 2009 and 2019. PCR was used to detect C. psittaci DNA in liver and lung. Positive samples were genotyped, additional PCR was performed on feces, and tissues were examined microscopically. C. psittaci was found in six (2.2 %) birds; three great tits (Parus major), two feral (Columba livia) and one wood pigeon (Columba palumbus). Two great tits and the wood pigeon had inflammatory lesions associated with C. psittaci. In the great tits and wood pigeon, C. psittaci genotype A, the cause of most human cases, was detected. Genotype B, considered endemic in pigeons, was detected in the feral pigeons. Low incidence of C. psittaci in dead Swedish garden birds was similar to studies on apparently healthy Swedish birds. Pathological findings were consistent with C. psittaci being fatal in half of the positive birds, which also had higher bacterial loads in feces. This highlights the risk for human infection via infected garden birds, especially regarding great tits and pigeons

    Anticoccidial Vaccination Is Associated with Improved Intestinal Health in Organic Chickens

    No full text
    Eimeria spp. and Clostridium perfringens (CP) are pathogens associated with coccidiosis and necrotic enteritis (NE) in broiler chickens. In this study we evaluated the effect of anticoccidial vaccination on intestinal health in clinically healthy organic Ross 308 chickens. On each of two farms, one unvaccinated flock (A1 and B1) was compared to one vaccinated flock (A2 and B2) until ten weeks of age (WOA). Faecal oocysts were counted weekly, and species were identified by PCR (ITS-1 gene). Lesion scoring, CP quantification and PCR targeting the CP NetB toxin gene were performed at three, four, and six WOA and chickens were weighed. Necropsies were performed on randomly selected chickens to identify coccidiosis/NE. Oocyst shedding peaked at three WOA in all flocks. Later oocyst shedding (E. tenella/E. maxima) in unvaccinated flocks at 5–7 WOA coincided with coccidiosis/NE. Although results differed somewhat between farms, vaccination was associated with lower intestinal lesion scores, reduced caecal CP counts, lower proportions of netB-positive CP, lower body weight at three–four WOA, and similar or slightly increased body weight at six WOA. In conclusion, the intestinal health of organic broilers can benefit from anticoccidial vaccination when oocyst exposure levels are high

    Brucella abortus : determination of survival times and evaluation of methods for detection in several matrices

    No full text
    BACKGROUND: Brucella abortus is a highly pathogenic zoonotic agent, tempting for the development of a rapid diagnostic method to enable adequate treatment and prevent further spread. Enrichment of the bacteria is often used as a first step in diagnostics to increase the bacterial number above the detection limit of the real-time PCR. The enrichment of Brucella spp. takes at least 3 days, which might be avoidable if sensitive PCR methods can be used. Since many matrices contain PCR inhibitors, the limit of detection (LOD) must be determined for each separate matrix. Another aim of this study was the determination of survival of Brucella abortus in the analyzed matrices. METHODS: The LOD for the detection of B. abortus in 14 matrices, relevant for human medicine, veterinary medicine and food and feed safety, was determined to evaluate the need of a pre-enrichment step prior to real-time PCR. The survival of B. abortus in the spiked matrices was tested by plate count in a 7-day interval for 132 days. RESULTS: The limit of detection for B. abortus in most matrices was in the range of 10(3)-10(4) CFU/g for cultivation and 10(4)-10(5) CFU/g for direct real-time PCR. The survival time of B. abortus was less than 21 days in apple puree and stomach content and 28 days in water while B. abortus remained viable at day 132 in milk, blood, spinach and minced meat. CONCLUSIONS: A direct PCR analysis without enrichment of bacteria saves at least 3 days. However, the limit of detection between direct PCR and plate count differs in a 10 fold range. We conclude that this lower sensitivity is acceptable in most cases especially if quick analysis are required

    Validation guidelines for PCR workflows in bioterrorism preparedness, food safety and forensics

    No full text
    The polymerase chain reaction (PCR) is the backbone of contemporary DNA/RNA analysis, ideally enabling detection of one or just a few target molecules. However, when analysing food or forensic samples the analytical procedure is often challenged by low amounts of poor quality template molecules and complex matrices. Applying optimised and validated methods in all steps of the analysis workflow, i.e. sampling, sample treatment, DNA/RNA extraction and PCR (including reverse transcription for RNA analysis), is thus necessary to ensure the reliability of analysis. In this paper, we describe how in-house validation can be performed for the different modules of the diagnostic PCR process, providing practical examples as tools for laboratories in their planning of validation studies. The focus is analysis of heterogeneous samples with interfering matrices, with relevance in food testing, forensic DNA analysis, bioterrorism preparedness and veterinary medicine. Our objective is to enable rational in-house validation for reliable and swift quality assurance when results are urgent, for example in the event of a crisis such as a foodborne outbreak or a crime requiring the analysis of a large number of diverse samples. To that end, we explain the performance characteristics associated with method validation from a PCR and biological sample matrix perspective and suggest which characteristics to investigate depending on the type of method to be validated. Also, we include a modular approach to validation within the PCR workflow, aiming at efficient validation and a flexible use of methods

    Questionnaire study suggests grave consequences of infectious laryngotracheitis, infectious coryza and mycoplasmosis in small chicken flocks

    No full text
    Abstract Background A growing number of people in western countries keep small chicken flocks. In Sweden, respiratory disease is a common necropsy finding in chickens from such flocks. A respiratory real-time polymerase chain reaction (PCR) panel was applied to detect infectious laryngotracheitis virus (ILTV), Avibacterium paragallinarum (A. paragallinarum) and Mycoplasma gallisepticum (M. gallisepticum) in chickens from small flocks which underwent necropsy in 2017–2019 and had respiratory lesions. Owners (N = 100) of PCR-positive flocks were invited to reply to a web-based questionnaire about husbandry, outbreak characteristics and management. Results Response rate was 61.0%. The flocks were from 18 out of Sweden’s 21 counties indicating that respiratory infections in small chicken flocks are geographically widespread in Sweden. Among participating flocks, 77.0% were coinfected by 2–3 pathogens; 91.8% tested positive for A. paragallinarum, 57.4% for M. gallisepticum and 50.8% for ILTV. Larger flock size and mixed-species flock structure were associated with PCR detection of M. gallisepticum (P = 0.00 and P = 0.02, respectively). Up to 50% mortality was reported by 63.9% of respondents. Euthanasia of some chickens was carried out in 86.9% of the flocks as a result of the outbreaks. Full clinical recovery was reported by 39.3% of owners suggesting chronic infection is a major challenge in infected flocks. Live birds had been introduced in many flocks prior to outbreaks, which suggested these as an important source of infection. Following the outbreaks, 36.1% replaced their flocks with new birds and 9.8% ceased keeping chickens. Conclusions This study highlights the severity of respiratory outbreaks in small non-commercial chicken flocks and points to the need for more research and veterinary assistance to prevent and manage respiratory infections in small chicken flocks

    Genomic comparison of Escherichia coli serotype O103:H2 isolates with and without verotoxin genes: implications for risk assessment of strains commonly found in ruminant reservoirs

    No full text
    Introduction: Escherichia coli O103:H2 occurs as verotoxigenic E. coli (VTEC) carrying only vtx1 or vtx2 or both variants, but also as vtx-negative atypical enteropathogenic E. coli (aEPEC). The majority of E. coli O103:H2 identified from cases of human disease are caused by the VTEC form. If aEPEC strains frequently acquire verotoxin genes and become VTEC, they must be considered a significant public health concern. In this study, we have characterized and compared aEPEC and VTEC isolates of E. coli O103:H2 from Swedish cattle. Methods: Fourteen isolates of E. coli O103:H2 with and without verotoxin genes were collected from samples of cattle feces taken during a nationwide cattle prevalence study 2011–2012. Isolates were sequenced with a 2×100 bp setup on a HiSeq2500 instrument producing >100× coverage per isolate. Single-nucleotide polymorphism (SNP) typing was performed using the genome analysis tool kit (GATK). Virulence genes and other regions of interest were detected. Susceptibility to transduction by two verotoxin-encoding phages was investigated for one representative aEPEC O103:H2 isolate. Results and Discussion: This study shows that aEPEC O103:H2 is more commonly found (64%) than VTEC O103:H2 (36%) in the Swedish cattle reservoir. The only verotoxin gene variant identified was vtx1a. Phylogenetic comparison by SNP analysis indicates that while certain subgroups of aEPEC and VTEC are closely related and have otherwise near identical virulence gene repertoires, they belong to separate lineages. This indicates that the uptake or loss of verotoxin genes is a rare event in the natural cattle environment of these bacteria. However, a representative of a VTEC-like aEPEC O103:H2 subgroup could be stably lysogenized by a vtx-encoding phage in vitro

    The prevalence and genomic context of Shiga toxin 2a genes in E. coli found in cattle.

    No full text
    Shiga toxin-producing Escherichia coli (STEC) that cause severe disease predominantly carry the toxin gene variant stx2a. However, the role of Shiga toxin in the ruminant reservoirs of this zoonotic pathogen is poorly understood and strains that cause severe disease in humans (HUSEC) likely constitute a small and atypical subset of the overall STEC flora. The aim of this study was to investigate the presence of stx2a in samples from cattle and to isolate and characterize stx2a-positive E. coli. In nationwide surveys in Sweden and Norway samples were collected from individual cattle or from cattle herds, respectively. Samples were tested for Shiga toxin genes by real-time PCR and amplicon sequencing and stx2a-positive isolates were whole genome sequenced. Among faecal samples from Sweden, stx1 was detected in 37%, stx2 in 53% and stx2a in 5% and in skin (ear) samples in 64%, 79% and 2% respectively. In Norway, 79% of the herds were positive for stx1, 93% for stx2 and 17% for stx2a. Based on amplicon sequencing the most common stx2 types in samples from Swedish cattle were stx2a and stx2d. Multilocus sequence typing (MLST) of 39 stx2a-positive isolates collected from both countries revealed substantial diversity with 19 different sequence types. Only a few classical LEE-positive strains similar to HUSEC were found among the stx2a-positive isolates, notably a single O121:H19 and an O26:H11. Lineages known to include LEE-negative HUSEC were also recovered including, such as O113:H21 (sequence type ST-223), O130:H11 (ST-297), and O101:H33 (ST-330). We conclude that E. coli encoding stx2a in cattle are ranging from strains similar to HUSEC to unknown STEC variants. Comparison of isolates from human HUS cases to related STEC from the ruminant reservoirs can help identify combinations of virulence attributes necessary to cause HUS, as well as provide a better understanding of the routes of infection for rare and emerging pathogenic STEC
    corecore