99 research outputs found
Rushes video summarization using a collaborative approach
This paper describes the video summarization system developed by the partners of the K-Space European Network of Excellence for the TRECVID 2008 BBC rushes summarization evaluation. We propose an original method based on individual content segmentation and selection tools in a collaborative system. Our system is organized in several steps. First, we segment the video, secondly we identify relevant and redundant segments, and finally, we select a subset of segments to concatenate and build the final summary with video acceleration incorporated. We analyze the performance of our system through the TRECVID evaluation
Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches
Axion helioscopes search for solar axions by their conversion in x-rays in
the presence of high magnetic fields. The use of low background x-ray detectors
is an essential component contributing to the sensitivity of these searches. In
this work, we review the recent advances on Micromegas detectors used in the
CERN Axion Solar Telescope (CAST) and proposed for the future International
Axion Observatory (IAXO). The actual setup in CAST has achieved background
levels below 10 keV cm s, a factor 100 lower than
the first generation of Micromegas detectors. This reduction is based on active
and passive shielding techniques, the selection of radiopure materials, offline
discrimination techniques and the high granularity of the readout. We describe
in detail the background model of the detector, based on its operation at CAST
site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4
simulations. The best levels currently achieved at LSC are low than 10
keV cm s and show good prospects for the application of
this technology in IAXO. Finally, we present some ideas and results for
reducing the energy threshold of these detectors below 1 keV, using
high-transparent windows, autotrigger electronics and studying the cluster
shape at different energies. As a high flux of axion-like-particles is expected
in this energy range, a sub-keV threshold detector could enlarge the physics
case of axion helioscopes.Comment: Proceedings of 3rd International Conference on Technology and
Instrumentation in Particle Physics (TIPP 2014
A collaborative approach to video summarization
This poster describes an approach to video summarization based on the combination of several decision mechanisms provided by the partners of the KSpace European Network of Excellence. The system has been applied to the TRECVID 2008 BBC rushes summarization task
Restructuring of colloidal aggregates in shear flow: Coupling interparticle contact models with Stokesian dynamics
A method to couple interparticle contact models with Stokesian dynamics (SD)
is introduced to simulate colloidal aggregates under flow conditions. The
contact model mimics both the elastic and plastic behavior of the cohesive
connections between particles within clusters. Owing to this, clusters can
maintain their structures under low stress while restructuring or even breakage
may occur under sufficiently high stress conditions. SD is an efficient method
to deal with the long-ranged and many-body nature of hydrodynamic interactions
for low Reynolds number flows. By using such a coupled model, the restructuring
of colloidal aggregates under stepwise increasing shear flows was studied.
Irreversible compaction occurs due to the increase of hydrodynamic stress on
clusters. Results show that the greater part of the fractal clusters are
compacted to rod-shaped packed structures, while the others show isotropic
compaction.Comment: A simulation movie be found at
http://www-levich.engr.ccny.cuny.edu/~seto/sites/colloidal_aggregates_shearflow.htm
Micromegas for dark matter searches: CAST/IAXO & TREX-DM experiments
The most compelling candidates for Dark Matter to day are WIMPs and axions. The applicability of gasesous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) to the search of these particles is explored within this work. Both particles would produce an extremely low rate at very low energies in particle detectors. Micromegas detectors can provide both low background rates and low energy threshold, due to the high granularity, radiopurity and uniformity of the readout. Small (few cm wide) Micromegas detectors are used to image the ax ion-induced x-ray signal expected in the CERN Axion Solar Telescope (CAST) experiment. We show the background levels obtained in CAST and the prospects to further reduce them to the values required by the Internation Axion Observatory (IAXO). We also present TREX-DM. a scaled-up version of the Micromegas used in axion research, but this time dedicated to the low-mass WIMP detection. TREX-DM is a high-pressure Micromegas-based TPC designed to host a few hundreds of grams of light nuclei (argon or neon) with energy thresholds potentially at the level of 100 eV. The detector is described in detail, as well as the results of the commissioning and characterization phase on surface. Besides, the background model of TREX-DM is presented, along with the anticipated sensitivity of this search, which could go beyond current experimental limits
Interpreting clinical trial data in multiple myeloma: translating findings to the real-world setting
Substantial improvements in survival have been seen in multiple myeloma (MM) over recent years, associated with the
introduction and widespread use of multiple novel agents and regimens, as well as the emerging treatment paradigm
of continuous or long-term therapy. However, these therapies and approaches may have limitations in the community
setting, associated with toxicity burden, patient burden, and other factors including cost. Consequently, despite
improvements in efficacy in the rigorously controlled clinical trials setting, the same results are not always achieved in
real-world practice. Furthermore, the large number of different treatment options and regimens under investigation in
various MM settings precludes the feasibility of obtaining head-to-head clinical trial data, and there is a temptation to
use cross-trial comparisons to evaluate data across regimens. However, multiple aspects, including patient-related,
disease-related, and treatment-related factors, can influence clinical trial outcomes and lead to differences between
studies that may confound direct comparisons between data. In this review, we explore the various factors requiring
attention when evaluating clinical trial data across available agents/regimens, as well as other considerations that may
impact the translation of these findings into everyday MM management. We also investigate discrepancies between
clinical trial efficacy and real-world effectiveness through a literature review of non-clinical trial data in relapsed/
refractory MM on novel agent−based regimens and evaluate these data in the context of phase 3 trial results for
recently approved and commonly used regimens. We thereby demonstrate the complexity of interpreting data across
clinical studies in MM, as well as between clinical studies and routine-care analyses, with the aim to help clinicians
consider all the necessary issues when tailoring individual patients’ treatment approaches
Neonatal DNA methylation and childhood low prosocial behavior: an epigenome-wide association meta-analysis
Low prosocial behavior in childhood has been consistently linked to later psychopathology, with evidence supporting the influence of both genetic and environmental factors on its development. Although neonatal DNA methylation (DNAm) has been found to prospectively associate with a range of psychological traits in childhood, its potential role in prosocial development has yet to be investigated. This study investigated prospective associations between cord blood DNAm at birth and low prosocial behavior within and across four longitudinal birth cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium. We examined (a) developmental trajectories of "chronic-low" versus "typical" prosocial behavior across childhood in a case-control design (N = 2,095), and (b) continuous "low prosocial" scores at comparable cross-cohort time-points (N = 2,121). Meta-analyses were performed to examine differentially methylated positions and regions. At the cohort-specific level, three CpGs were found to associate with chronic low prosocial behavior; however, none of these associations was replicated in another cohort. Meta-analysis revealed no epigenome-wide significant CpGs or regions. Overall, we found no evidence for associations between DNAm patterns at birth and low prosocial behavior across childhood. Findings highlight the importance of employing multi-cohort approaches to replicate epigenetic associations and reduce the risk of false positive discoveries
Association of candidate pharmacogenetic markers with platinum-induced ototoxicity: PanCareLIFE dataset
Genetic association studies suggest a genetic predisposition for cisplatin-induced ototoxicity. Among other candidate genes, thiopurine methyltransferase (TPMT) is considered a critical gene for susceptibility to cisplatin-induced hearing loss in a pharmacogenetic guideline. The PanCareLIFE cross-sectional cohort study evaluated the genetic associations in a large pan-European population and assessed the diagnostic accuracy of the genetic markers. 1,112 pediatric cancer survivors who had provided biomaterial for genotyping were screened for participation in the pharmacogenetic association study. 900 participants qualified for inclusion. Based on the assessment of original audiograms, patients were assigned to three phenotype categories: no, minor, and clinically relevant hearing loss. Fourteen variants in eleven candidate genes (ABCC3, OTOS, TPMT, SLC22A2, NFE2L2, SLC16A5, LRP2, GSTP1, SOD2, WFS1, and ACYP2) were genotyped. The genotype and phenotype data represent a resource for conducting meta-analyses to derive a more precise pooled estimate of the effects of genes on the risk of hearing loss due to platinum treatment
Genetic determinants of ototoxicity during and after childhood cancer treatment: Protocol for the pancarelife study
Background: Survival rates after childhood cancer now reach nearly 80% in developed countries. However, treatments that lead to survival and cure can cause serious adverse effects with lifelong negative impacts on survivor quality of life. Hearing impairment is a common adverse effect in children treated with cisplatin-based chemotherapy or cranial radiotherapy. Ototoxicity can extend from high-tone hearing impairment to involvement of speech frequencies. Hearing impairment can impede speech and language and neurocognitive development. Although treatment-related risk factors for hearing loss following childhood cancer treatment have been identified, the individual variability in toxicity of adverse effects after similar treatment between childhood cancer patients suggests a role for genetic susceptibility. Currently, 12 candidate gene approach studies have been performed to identify polymorphisms predisposing to platinum-induced ototoxicity in children being treated for cancer. However, results were inconsistent and most studies were underpowered and/or lacked replication. Objective: We describe the design of the PanCareLIFE consortium's work packages that address the genetic susceptibility of platinum-induced ototoxicity. Methods: As a part of the PanCareLIFE study within the framework of the PanCare consortium, we addressed genetic susceptibility of treatment-induced ototoxicity during and after childhood cancer treatment in a large European cohort by a candidate gene approach and a genome-wide association screening. Results: This study included 1124 survivors treated with cisplatin, carboplatin, or cranial radiotherapy for childhood cancer, resulting in the largest clinical European cohort assembled for this late effect to date. Within this large cohort we defined a group of 598 cisplatin-treated childhood cancer patients not confounded by cranial radiotherapy. The PanCareLIFE initiative provided, for the first time, a unique opportunity to confirm already identified determinants for hearing impairment during childhood cancer using a candidate gene approach and set up the first international genome-wide association study of cisplatin-induced direct ototoxicity in childhood cancer patients to identify novel allelic variants. Results will be validated in an independent replication cohort. Patient recruitment started in January 2015 and final inclusion was October 2017. We are currently performing the analyses and the first results are expected by the end of 2019 or the beginning of 2020. Conclusions: Genetic factors identified as part of this pan-European project, PanCareLIFE, may contribute to future risk prediction models that can be incorporated in future clinical trials of platinum-based therapies for cancer and may help with the development of prevention strategies
- …